期刊文献+

基于不同模态语义匹配的跨媒体检索 被引量:2

CROSS-MEDIA RETRIEVAL BASED ON DIFFERENT MODAL SEMANTIC MATCHING
下载PDF
导出
摘要 在信息检索服务中跨媒体检索技术日益重要,为了提高其检索的准确度,需要加强对不同模态之间语义信息的相互关系的学习和分析.早期的跨媒体检索技术侧重于对多媒体信息的底层特征的分析,而忽略了多媒体信息的底层特征与高层语义方面存在的联系.本文分析了多媒体信息在底层特征与高层语义之间的关联,根据不同模态对象的底层特征空间构造出同构的高层语义空间,将集成学习的方法应用到跨媒体检索之中.提出了Bagging-SM的方法对不同模态的多媒体对象进行语义匹配.实验结果表明该方法相比于其他方法,对跨媒体检索结果的准确度有很大的提升. In information retrieval service,the cross-media retrieval technology has become increasingly important. In order to improve the accuracy of retrieval,it is necessary to strengthen the learning and analysis of the interrelationship of semantic information among different modalities. cross-media retrieval early focuses on the analysis of the low-level features of multimedia information,and ignores the relationship between the low-level features of multimedia information and high-level semantic aspects. In this paper,we analyze the association of multimedia information between low-level features and high-level semantics,construct high-level semantic spaces according to the low-level feature spaces of different modal objects,and apply ensemble learning methods based on different modalities to cross-media retrieval. The Bagging-SM method is proposed for semantic matching of multimedia objects with different modes. The experimental results show that the proposed method has a great improvement on the accuracy of cross-media retrieval results.
作者 陈祥 于治楼 Chen Xiang Yu Zhilou(School of Information Science and Engineering, Shandong Normal University, 250014, Jinan, China Inspur Group Ltd, 250101, Jinan, China Shandong Provincial Key Laboratory for Novel Distributed Computer Software Technology, 250014, Jinan, China)
出处 《山东师范大学学报(自然科学版)》 CAS 2017年第3期9-15,共7页 Journal of Shandong Normal University(Natural Science)
关键词 跨媒体检索 语义匹配 特征提取 集成学习 cross-media retrieval semantic matching feature extraction ensemble learning
  • 相关文献

参考文献3

二级参考文献24

  • 1袁薇,高淼.综合语义与颜色特征的图像检索技术研究[J].微电子学与计算机,2006,23(1):36-39. 被引量:4
  • 2张静,路红,薛向阳.基于索引结构的高效运动视频检索[J].计算机研究与发展,2006,43(11):1953-1958. 被引量:3
  • 3庄毅,庄越挺,吴飞.Composite Distance Transformation for Indexing and κ-Nearest-Neighbor Searching in High-Dimensional Spaces[J].Journal of Computer Science & Technology,2007,22(2):208-217. 被引量:3
  • 4Zhuang Yueting, Yang Yi, Wu Fei. Mining semantic correlation of heterogeneous multimedia data for cross - media retrieval[J]. IEEE Transactions on Multimedia, 2008,10 (2) : 221 - 229.
  • 5Ahmet Ekin, Murat Tekalp A, Rajiv Mehrotra. Integrated semantic - syntactic video modeling for search and browsing[J]. IEEE Transactions on Multimedia, 2004,6 (6) : 839 - 851.
  • 6Umapathy K, Krishnan S, Jimaa S. Multigroup classification of audio signals using time- frequency parameters[J ]. IEEE Transactions on Multimedia, 2005, 7 ( 2 ) : 308 - 315.
  • 7Yong Rui,Thomas S Huang,Shih-Fu Chang.Image retrieval:Current techniques,promising directions and open Issues[J].Journal of Visual Communication and Image Representation,1999,10(1):39-62
  • 8H McGurk,J MacDonald.Heating lips and seeing voices[J].Nature,1976,264(5588):746-748
  • 9A Calvert.Cross-modal processing in the human brain:insights from functional neuron imaging studie[J].Cerebral Cortex,2001,11(12):1120-1123
  • 10J Foote.An overview of audio information retrieval[J].ACM Multimedia Systems,1999,7(1):2-11

共引文献276

同被引文献6

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部