期刊文献+

基于ROS二维地图构建的方法 被引量:3

A Method of Mapping Based on ROS
下载PDF
导出
摘要 针对自主移动机器人局部地图构建问题,给出了一种利用激光雷达构建局部地图的方法,该方法利用已经获得的地图对激光束点阵进行优化,估计激光点在地图的表示和占据网格的概率,地图采用的是多分辨率的形式,从而避免出现局部最小而非全局最优的情形,在地图构建中具有易实现、精度高等特点。同时采用激光雷达改进算法对数据进行预处理时的方法提取环境特征以降低噪声干扰,采用激光扫描匹配的方法提高构图与定位的准确性。在Linux下完成基于ROS平台的室内定位与同步建图,完成了二维地图的构建与机器人定位,进行了实验检查与分析。 Aiming at the problem of local mapping of autonomous mobile robot,this paper introduces a method of local mapping by using rplidar.The method optimizes the laser dot matrix by using the obtained map,estimate the representation of laser spot on the map,and the probability of occupying the grid, the map is used in the form of multiresolution,so as to avoid the local minimum instead of the global optimal,in the process of mapping there has been easy to achieve,high accuracy,etc.At the same time,using the laser radar improved algorithm to preprocess the data to extract the environment characteristics to reduce the noise interference.
出处 《工业控制计算机》 2017年第9期42-43,45,共3页 Industrial Control Computer
关键词 激光雷达 ROS 地图构建 扫描匹配 laser radar,ROS,mapping,scanning matching
  • 相关文献

参考文献2

二级参考文献24

  • 1[1]Jensfelt P, Cgrustebseb H. Laser based position acpuisition and tracking in an indoor environment[A]. Proceedings of IEEE International Symposium on Robotics and Automation[C]. Mexico: 1998,l. 331-338.
  • 2[2]Davison A J, Nobuyuki K. 3D simultaneous localization and map building using active vision for a robot moving on undulating terrain[A]. Proceedings of the IEEE International Conference on Computer Vision and Recognization[C]. Hawail: 2001,1. 384-391 .
  • 3[3]Se S, Lowe D, Little J. Vision-based mobile robot localization and mapping using scale-invariant features[A]. Proceedings of the IEEE International Conference on Robotics and Automation[C]. Korea: 2001. 2051-2058.
  • 4[4]Leonard J, Durrant-Whyte H F. Dynamic map building for an autonomous mobile robot[J]. International Journal of Robotics Research, 1992, 11(4): 286-298.
  • 5[5]Moutarlier P, Chatila R. Stochastic multisensory data fusion for mobile robot localization and environmental modeling[A]. Proceedings of the International Symposium on Robotics Research[C]. 1990. 85-94.
  • 6[6]Montemerlo M, Thrun S. FastSLAM: a factored solution to the simultaneous localization and mapping problem[A]. Proceedings of the Eighteenth National Conference on Artificial Intelligence[C]. Edmonton: AAAI Press, 2002. 593-598.
  • 7[7]Hu S, Hu D D, Gu O. Landmark-based navigation of mobile robots in manufacturing[A]. IEEE International Conference on Emerging Technologies & Factory Automatin[C]. Spain: 1999. 18-21.
  • 8[8]Leonard J, Durrant-White H F. Directed Sonar Sensing for Mobile Robot Navigation[M]. Boston: Kluwer Academic Publishers, 1992. 208-216.
  • 9[9]Thrun S. Particle filters in robotics[A]. Proceedings of Uncertainty in AI (UAI- 2002)[C]. San Francisco: Morgan Kaufmann Publishers, 2002.511-518.
  • 10[10]Feder H J S. Simultantous stochastic mapping and localization[D]. USA: MIT, 2001.

共引文献73

同被引文献29

引证文献3

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部