摘要
本文基于不完备偏好集中元素对应的等价类集是一个偏序集,把不完备偏好问题转化为偏序问题,得到了不完备偏好下的不动点定理,提供一种新的方法证明局中人的决策偏好不满足完备性时,n人非合作博弈中广义强Berge均衡的存在性.
Based on the equivalence class set corresponding the incomplete prefer- ences set is a partial order set, this paper translates the incomplete preferences problem into the partial order problem. Using the famous Zorn's lemma, we get the fixed point theorems in incomplete preference sets. By this technique, it is strictly proven that the existence of generalized strong Berge equilibrium in the noncooperative game under incomplete preferences.
作者
李兴昌
LI Xingchang(School of Mathematics and Statistics, Changshu Institute of Technology, Changshu 215500, China)
出处
《应用泛函分析学报》
2017年第3期311-317,共7页
Acta Analysis Functionalis Applicata
基金
国家社会科学基金(13CJL006)
中国博士后科学基金(2014M551264)
黑龙江省博士后科学基金(LBH-213123)
常熟理工学院校级科研项目(XE1509)
关键词
不完备偏好
不动点定理
非合作博弈
强Berge均衡
incomplete preferences
fixed point theorems
noncooperative game
strongBerge equilibrium