期刊文献+

基于图优化方法的点云三维环境重构 被引量:4

Three-dimensional Reconstruction of Point Cloud Based on Graph Optimization Method
下载PDF
导出
摘要 点云的三维重构对无人车感知和高精度地图的制作具有重要作用。为得到与真实环境一致的点云三维环境,提出以GPS差分状态良好的点云为参考,将闭环图优化延伸到非闭环条件下,分别对局部差分不好的路段进行ICP配准和图优化,在此基础上建立全局图结构实施精细优化的算法。通过实验发现,运用该算法消除了配准的累积误差和轨迹重合区域的点云误差,得到全局相对位置一致的点云,达到与真实环境一致的三维重构效果。 Three-dimensional reconstruction of point cloud plays an important role in perceiving unmanned vehicles and making high precision maps. In order to obtain three-dimensional environment of point cloud which is consistent with real environment,the paper firstly proposes a method that extending the closed-loop graph to non-closed-loop graph with point cloud of good GPS differential state as reference. Then,it conducts ICP registration and graph optimization on partial bad differential section respectively,and establishes global graph structure to implement fine optimization. The experiment shows that this algorithm eliminates cumulative error of the registration and point cloud error in the intersection area,and it obtains the point cloud which has relative position in global and achieves three-dimensional reconstruction effect consistent with real environment.
出处 《军事交通学院学报》 2017年第9期85-90,共6页 Journal of Military Transportation University
基金 国家自然科学基金重大项目(91220301) 国家重大研发计划(2016YFB0100903)
关键词 配准 图优化 点云 三维重构 无人车 registration graph optimization point cloud three-dimensional reconstruction unmanned vehicles
  • 相关文献

参考文献2

二级参考文献26

  • 1朱延娟,周来水,张丽艳.散乱点云数据配准算法[J].计算机辅助设计与图形学学报,2006,18(4):475-481. 被引量:97
  • 2薛耀红.点云数据配准及曲面细分技术[M].北京:国防工业出版社,2010:24-30.
  • 3戴静兰,陈志杨,叶修梓.ICP算法在点云配准中的应用[J].中国图象图形学报,2007,12(3):517-521. 被引量:196
  • 4Besl P J, Mckay N D. A method for registration of 3-d shapes E J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992,14 (2) : 239-256.
  • 5Chen Y,Medioni G.Object Modeling by Registration of Multiple Range Images E C j//In : Proceeding of the 1991 IEEE International Conference on Robotics and Automation, Sacramento, CA, USA, 1991 : 2724-2729.
  • 6Blais G,Levine M D.Registering Multiview Range Data to Create 3D Computer Graphics E J] .IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17 ( 8 ) ~ 820-824.
  • 7Radu Bogdan Rusu,Zoltan Csaba Marton, Nico Blodow,et al. Persistent point feature histograms for 3D point clouds [A]. Proc. of the 10th International Conference on Intelli- gent Autonomous Systems[C]. 2008,119-128.
  • 8Radu Bogdan Rusu, Nico Blodow, Michacl Bcctz, et al. Fast point feature histograms(FPFH) for 3D registration [A]. Prec. of the IEEE International Conference on Ro- botics and Automation(ICRA) [C]. 2009,3212-3217.
  • 9Van Tung Nguyen, Trung-Thien Tran, Van-Toan Cao, et al. 3D Point Cloud Registration Based on the Vector Field Representation [A]. Proc. of Pattern Recognition (ACPR) ,2013 2nd IAPR Asian Conference on. IEEE[C]. 2013,491-495.
  • 10HE Bing-wei, LIN Ze-ming, Li Y F. An automatic registra- tion algorithm for the scattered point clouds based on the curvature feature[J]. Optics & Laser Technology, 2013, 46 : 53-60.

共引文献23

同被引文献19

引证文献4

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部