期刊文献+

基于EMD-SVM的小型发电机组物理声源灵敏度分析 被引量:3

Sensitivity Analysis on Physical Noise Sources of Small Generator Based on EMD-SVM
下载PDF
导出
摘要 为了解决无法直接得到小型发电机组的物理声源及其灵敏度的问题,采用经验模态分解(EMD)和支持向量机(SVM)协同分析的方法,开展噪声信号盲源分离,提取独立分量(IC)并识别主要物理声源,以测点声压级、机组功率和独立分量的声压级作为样本数据建立支持向量机回归模型,推导灵敏度计算函数,计算主要物理声源的灵敏度,得到了小型发电机组主要物理声源对辐射噪声的影响率.研究结果表明:影响该小型发电机组辐射噪声的主要因素有功率、配气机构噪声和驱动平衡轴的齿轮噪声,应用EMD-SVM协同分析可得到物理声源灵敏度,对于噪声控制具有重要指导意义. To solve the problem that the physical noise sources of small generator and its sensitivity can't be obtained directly,the empirical mode decomposition(EMD)and support vector machine(SVM)were combined to separate the blind sources of noise signals,obtain the independent components(IC)and identify the physical noise sources.The SVM regression model was established on the samples of sound pressure level of measuring point,generator power and sound pressure level of the IC.The sensitivity calculation function was derived,the sensitivity of main physical noise source was calculated,and the influence rate of main physical noise source on small generator radiated noise was obtained.The research concludes that the main factors affecting the radiated noise of the small generator are power,valve train noise and balancing shaft gear noise,and the sensitivity of physical noise source can be obtained by using EMD-SVM,which has important guiding significance for noise control.
出处 《天津大学学报(自然科学与工程技术版)》 EI CSCD 北大核心 2017年第10期1077-1083,共7页 Journal of Tianjin University:Science and Technology
基金 国家科技支撑计划资助项目(2015BAF07B04)~~
关键词 小型发电机组 物理声源 灵敏度 经验模态分解 支持向量机 small generator physical noise source sensitivity empirical mode decomposition(EMD) support vector machine(SVM)
  • 相关文献

参考文献5

二级参考文献50

  • 1郝志勇,韩军.Identification of diesel front sound source based on continuous wavelet transform[J].Journal of Zhejiang University Science,2004,5(9):1069-1075. 被引量:8
  • 2葛楠,刘月辉.独立分量分析在内燃机噪声信号分离中的应用[J].天津大学学报,2006,39(4):454-457. 被引量:9
  • 3孟子厚,赵凤杰.民乐片段混响感主观偏爱度的初步实验[J].应用声学,2007,26(1):41-45. 被引量:14
  • 4Brandstein M, Ward D (editors). Microphone Arrays: Signal Processing Techniques and Applications[M]. Springer-Verlag, Berlin, 2001.
  • 5Park H, Shekhar Dhir C, Oh S et al. A filter bank approach to independent component analysis for convolved mixtures [J]. Neurocomputing, 2006, 69 (16-18) : 2065-2077.
  • 6Makino S. Blind source separation of convolutive mixtures [C]. In: Proceedings of SPIE--The International Society for Optical Engineering. Kissimmee, FL, USA, 2006.
  • 7Robledo-Arnuncio E, Juang B. Blind source separation of acoustic mixtures with distributed microphones [C]. In: 2007 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP' 07. Honolulu, HI, USA. 2007. 949-952.
  • 8Ukai S, Takatam T, Saruwatari H et al. Multistage SIMO- model-based blind source separation combining frequency- domain ICA and time-domain ICA[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2005, E88-A (3) : 642-649.
  • 9Sawada H, Mukai R, Araki Set al. A robust and precise method for solving the permutation problem of frequency- domain blind source separation[J]. IEEE Transactions on Speech andAudio Processing, 2004, 12 (5) : 530-538.
  • 10Reju V G, Koh S N, Soon I Y. Partial separation method for solving permutation problem in frequency domain blind source separation of speech signals[J]. Neurocomputing, 2008, 71 (10-12) : 2098-2112.

共引文献36

同被引文献46

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部