期刊文献+

无线传感器网络中能量全局优化精确数据收集 被引量:2

Energy global optimization algorithm for precise data gathering in wireless sensor networks
下载PDF
导出
摘要 在多跳无线传感器网络进行精确数据收集时,靠近汇聚节点(sink节点)的传感器节点因为需转发其他节点的数据,其能量消耗快,容易使网络造成能量空洞,缩短网络寿命。为延长网络寿命,提出一种能量全局优化的精确数据收集算法(EGODGA),有效地收集传感器节点的数据。与经典的最短路径算法Dijkstra不同,EGODGA算法同时考虑链路代价和节点代价,找出从源节点到目的节点的最小代价路径,实现网络能量全局优化。仿真结果表明:在相同的条件下,与经典的最短路径算法Dijkstra和对瓶颈节点能量均衡问题解决较好的MAXLAT算法相比,EGODGA算法可以通过优化网络拓扑子树的节点数目,实现网络的能量均衡,缓解网络瓶颈问题,延长网络的整体寿命。 When multi-hop wireless sensor networks gathering the precise data, the node closed to the sink need to transmit other nodes' data, which depletes their energy faster and can easily cause network an energy hole that would shorten the network lifetime. In order to prolong the network lifetime, a novel algorithm called EGODGA is proposed to collect sensor nodes' data availably. Different from the traditional shortest path tree Dijkstra algorithm, this algorithm considers the link cost and node cost simultaneously, seeks out a minimum cost path from source node to destination node and attains network energy global optimization. The simulation results show that under the same conditions, compared with the classic shortest path algorithm Dijkstra and the bottleneck node energy balance to solve the problem of MAXLAT algorithm, EGODGA algorithm can optimize the network topology by the number of nodes of the subtree, achieve energy balance network, alleviate network bottlenecks, prolong the network life overall.
出处 《广西大学学报(自然科学版)》 CAS 北大核心 2017年第5期1744-1752,共9页 Journal of Guangxi University(Natural Science Edition)
基金 广西自然科学基金资助项目(2014GXNSFAA118373)
关键词 无线传感器网络 数据收集 能量全局优化 最小代价路径 wireless sensor networks data gathering energy global optimization minimum cost path
  • 相关文献

参考文献5

二级参考文献43

  • 1张卿,谢志鹏,凌波,孙未未,施伯乐.一种传感器网络最大化生命周期数据收集算法(英文)[J].软件学报,2005,16(11):1946-1957. 被引量:18
  • 2李成法,陈贵海,叶懋,吴杰.一种基于非均匀分簇的无线传感器网络路由协议[J].计算机学报,2007,30(1):27-36. 被引量:371
  • 3杨文国,郭田德.求解无线传感器网络路由问题的蚁群最优化算法及其收敛性[J].系统科学与数学,2007,27(2):239-246. 被引量:7
  • 4Song Mao, Zhao Chenlin, Zhou Zheng, et al. An im- proved fuzzy unequal clustering algorithm for wireless sen- sor network [ J ]. Mobile Networks and Applications,2012, 11(6): 245-250.
  • 5Xiang Xiaojing, Wang Xin, Zhou Zehua. Self-adaptive on-demand geographic routing for mobile ad hoc networks [ J]. IEEE Transactions on Mobile Computing, 2012, 11 (9) : 1572-1586.
  • 6Caione C, Brunelli D, Benini L. Distributed compressive sampling for lifetime optimization in dense wireless sensor networks [ J ]. IEEE Transactionson Industrial Informat- ics, 2012, 8(1) : 30-40.
  • 7Yi Wang, Du Zhang. An energy efficient and balance hi- erarchical unequal clustering algorithm for large scale sen- sor networks[ J] Information Technology Journal, 2009, 8(1) : 28-38.
  • 8Das S K,Tripathi S,Burnwal A P.Fuzzy based energy efficient multicast routing for ad-hoc network[C]∥IEEE 20153rd International Conference on Computer,Communication,Control and Information Technology(C31T),2015:1-5.
  • 9Lee H J,Nam J C,Seo W K,et al.Enhanced PRoPHET routing protocol that considers contact duration in DTNs[C]∥Proc of IEEE 2015International Conference on Information Networking(ICOIN),2015:523-524.
  • 10Zhao M,Yang Y.Bounded relay hop mobile data gathering in wireless sensor networks[J].IEEE Transactions on Computers,2012,61(2):265-277.

共引文献45

同被引文献7

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部