期刊文献+

镁铝混合粉粉尘最低着火温度实验 被引量:7

Minimum ignition temperature experiment of magnesium aluminum mixed dust
下载PDF
导出
摘要 为了研究镁铝混合粉中铝粉质量百分数对最低着火温度的影响,利用HY16429型粉尘云引燃温度试验装置和HY16430粉尘层最低着火温度实验装置测定镁铝混合粉的最低着火温度。研究结果表明:镁粉粒径为1~10 mm,铝粉粒径为200~300目,在粉尘质量0.5 g,喷尘压力60 k Pa条件下,镁粉尘云最低着火温度为575℃,镁粉尘层最低着火温度为300℃;铝粉尘云在1 000℃未着火,铝粉粉尘层最低着火温度为470℃;镁铝混合粉尘云最低着火温度比粉尘层最低着火温度高,粉尘层状态比粉尘云状态更容易着火。镁铝混合粉最低着火温度随着铝粉质量百分数的增加而升高。 To study the influence of aluminum dust mass percentage in magnesium aluminum dust mixture on the minimum ignition temperature, the minimum ignition temperature of magnesium aluminum dust mixture was experimentally studied by HY16429 type dust cloud ignition temperature testing device and HY16430 minimum ignition temperature of dust layer experiment device in this paper. The results showed that: minimum ignition temperature of magnesium dust cloud and magnesium dust layer were 575 ℃ and 300 ℃, respectively at the dust particle size of ( 1 - 10) ram; minimum ignition temperature of aluminum dust layer was 470 ℃, but the aluminum dust cloud was not ignited in 1 000 ℃, at the dust particle size of (200 -300 ) mesh; Minimum ignition temperature of magnesium aluminum mixed dust cloud was higher than that of the dust layer, and the state of dust layer was more easily to be ignited than the state of dust cloud. Minimum ignition temperature of magnesium aluminum powder mixed rised with the increase of aluminum powder quality percentage.
出处 《广西大学学报(自然科学版)》 CAS 北大核心 2017年第5期1924-1929,共6页 Journal of Guangxi University(Natural Science Edition)
基金 国家自然科学基金资助项目(41402306) 广西安全生产科技项目(gxaj201405)
关键词 镁铝混合粉 粉尘云 粉尘层 最低着火温度 magnesium aluminum mixed powder dust cloud dust layer minimum ignition temperature
  • 相关文献

参考文献2

二级参考文献24

  • 1李刚,刘晓燕,钟圣俊,党君祥.粮食伴生粉尘最低着火温度的实验研究[J].东北大学学报(自然科学版),2005,26(2):145-147. 被引量:33
  • 2Ryzhik A B. Ignition of suspensions of aluminum-magnesium alloy powders in nitrogen-oxygen media[J]. Combustion, Explosion, and Shock Waves, 1978,14(2) : 258-260.
  • 3Eckhoff R K. Dust explosion prevention in process industries[M]. 2nd ed. Butterworth Heinemann.. Elsevier, 1991:534-586.
  • 4Khaikin B I, Bloshenko V N, Merzhanov A G. On the ignition of metal particles[J]. Combustion, Explosion, and Shock Waves, 1970,6(4) :412-422.
  • 5Nifuku M, Koyanaka S, Ohya H, et al. Ignitability characteristics of aluminum and magnesium dusts relating to the shredding processes of industrial wastes[C]//Amyotte P. Proceedings of Sixth International Symposium on Hazards, Prevention, and Mitigation of Industrial Explosions, Vol. I. Halifax, NS, Canada: Dalhousie University, 2006:77-86.
  • 6Nifuku M, Tsujitab H, Fujino K, et al. Ignitahility characteristics of aluminum and magnesium dusts that are generated during the shredding of post-consumer wastes[J]. Journal of Loss Prevention in the Process Industries, 2007,20(4-6) :322-329.
  • 7JIS Z 8818-2002, Test method for minimum explosible concentration of combustible dusts[S]. Tokyo, Japan: Japanese Industrial Standard, 2002.
  • 8Mintz K J. Problems in experimental measurements of dust explosions[J]. Journal of Hazardous Materials, 1995 (42): 177-186.
  • 9ISO 6184-1-1985, Explosion protection systems. Part 1: Determination of explosion indices of combustible dusts in air[S]. Geneva, Switzerland : International Organization for Standardization, 1985.
  • 10IEC 1241-2-1-1994, Methods for determining the minimum ignition temperatures of dust. Method B: Dust cloud in a furnace at a constant temperature[S]. Geneva, Switzerland: International Electrotechnieal Commission, 1994.

共引文献58

同被引文献72

引证文献7

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部