期刊文献+

基于惯常速率的多类目标轨迹预测 被引量:1

Trajectory prediction for multi-class target based on preferred speed
原文传递
导出
摘要 为了解决监控视频中对大量不同类型的运动目标进行运动轨迹预测的问题,系统地提出了对多类目标的轨迹预测流程;在社交力模型的基础上,探讨了一种新的以惯常速率为聚类对象的运动模式特质分类方法,并应用这种方法在Stanford Drone数据库上取得了领先的结果.该方法可以使目标轨迹预测的研究对象拓展到除行人以外的其他任何移动目标,如汽车、自行车等运动物体,并对它们的运动轨迹进行有效预测.该方法在实现高精度预测的基础上,极大地缩短了目标分类所用的时间,分类效率的提高达5个数量级. To solve the problem of trajectory prediction for multi-class target,Firstly,a systematic procedure to predict the trajectory for multi-class target was proposed.Secondly,a brand-new target classification method based on social force model was introduced,which clustered the targets with preferred speed.The proposed algorithm obtained state-of-art results on Stanford Drone Dataset.The classification method could be applied to all kinds of moving targets in videos,including cars and cyclists,for trajectory prediction.The efficiency of target classification was improved by five orders of magnitudes.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2017年第10期100-104,共5页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(61340046 61673030 U1613209) 教育部博士学科点科研基金资助项目(20130001110011) 广东省自然科学基金资助项目(2015A030311034)
关键词 多目标跟踪 轨迹预测 运动模式特质 多类目标分类 社交力模型 multi-target tracking trajectory prediction motion pattern attribute multi-class targetclassification social force model
  • 相关文献

参考文献1

二级参考文献2

  • 1Xu Cheng,Nijun Li,Suofei Zhang,Zhenyang Wu.Robust Visual Tracking with SIFT Features and Fragments Based on Particle Swarm Optimization[J].Circuits Systems and Signal Processing.2014(5)
  • 2David A. Ross,Jongwoo Lim,Ruei-Sung Lin,Ming-Hsuan Yang.Incremental Learning for Robust Visual Tracking[J].International Journal of Computer Vision (-).2008(1-3)

共引文献6

同被引文献8

引证文献1

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部