摘要
考虑太阳轮和行星架支承轴承的时变支承刚度,采用集中参数法建立节点外啮合行星齿轮系统齿轮-轴承耦合动力学模型,运用Rung-Kutta算法求解得到太阳轮和行星架的振动加速度响应;利用某型机械功率封闭试验台开展振动测试试验,基于小波变换获得降噪信号。研究结果表明:支承刚度时变情况下的振动加速度幅值要大于支承刚度为定值时的加速度。横向振动的试验值与理论值的误差为16.27%,在允许范围内,而纵向振动受重力影响存在较大偏差,同时,考虑时变支承刚度求解得到的振动加速度更接近试验结果,即支承刚度的时变性不可忽略。
Considering the time-varying support stiffness of bearings of the sun gear and the carrier, the lumped-parameter method was used to establish a coupling dynamics model of planetary gear transmission with meshing beyond pitch point. The vibration acceleration responses of the sun gear and the carrier were obtained by using Runge-Kutta method. The theoretical results show that the vibration acceleration values with time-varying support stiffness are larger than that with constant support stiffness. The experimental study using a mechanical power closed test rig was carried out. The experimental signals were denoised by the wavelet theory. There is an error of 16.27% between theoretical and experimental values in horizontal direction, which is in the allowed range; the values have large error in vertical direction due to the influence of gravity. The experiment results also show that the vibration acceleration values with the time-varying support stiffness are closer to the experimental results, which indicates that the time-variant of support stiffness is not ignorable.
出处
《中南大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2017年第8期2016-2023,共8页
Journal of Central South University:Science and Technology
基金
国家自然科学基金资助项目(51305196)~~
关键词
节点外啮合
行星轮系
滚动轴承
耦合动力学
试验验证
meshing beyond pitch point
planetary gear
rolling element bearing
coupling dynamics
experiment