期刊文献+

基于扩散界面法的液态铅铋合金中气泡上升行为模拟 被引量:3

Numerical Simulation on Bubble Rising Behavior in Liquid Lead-bismuth Alloy Based on Diffuse-interface Method
下载PDF
导出
摘要 基于扩散界面法,对单个氮气气泡在液态铅铋合金内从静止到充分发展整个过程中的动力学行为进行数值模拟,得到气泡形变特性和气泡上升速度随时间的变化关系,将模拟结果与Grace经验关系图对比,发现模拟得到的气泡形变结果在Grace经验关系图中均可找到且很好地吻合,从而验证了扩散界面法在模拟液态铅铋合金中气泡上升行为的可行性和准确性。同时基于界面扩散法的模拟,对比了5种不同初始直径的氮气泡在液态铅铋合金中的上升行为,发现初始直径较小的气泡在上升过程中扰动会更剧烈,初始直径较大的气泡在上升过程中易发生分裂现象。 The numerical simulation of a single nitrogen bubble in liquid lead-bismuth alloy(LBE)from static to the full development of dynamic behavior based on diffuseinterface method was done to get the relationship of deformation and rising velocity of the bubble by time.Comparing results of simulation of the flow characteristics about inert gas and liquid LBE with Grace's graphical correlation,it is found that deformation of the bubble is consistent with Grace's graphical correlation,which verifies the feasibility and the accuracy of diffuse-interface method on simulation of rising bubble's behavior in liquid LBE.By comparing rising behaviors of five different initial diameters of nitrogen bubble in liquid LBE based on diffuse-interface method,it is found that the smaller bubble initial diameter is,the disturbance will be more intense in the rising process,and the larger the bubble initial diameter is,the splitting phenomenon occursmore easily in the rising process.
出处 《原子能科学技术》 EI CAS CSCD 北大核心 2017年第10期1834-1839,共6页 Atomic Energy Science and Technology
基金 国家自然科学基金资助项目(11675057)
关键词 扩散界面法 气泡 液态铅铋合金 数值模拟 diffuse-interface method bubble liquid lead-bismuth alloy numericalsimulation
  • 相关文献

参考文献6

二级参考文献53

  • 1蔡杰进,曾庆允,渡边正.基于OpenFOAM的气泡上升特性数值模拟[J].热力发电,2013,42(9):24-31. 被引量:6
  • 2Koshizuka S, Oka Y. Moving-Particle Semi-Implicit Method for Fragmentation of Incompressible Fluid[J].Nuclear Science and Engineering, 1996, 123(3): 421-434.
  • 3Tian Wenxi, Ishiwatari Yuki, Oka Yoshiaki. Numerical Simulation on Void Bubble Dynamics Using Moving Particle Semi-implicit Method[J]. Nuclear Engineering and Design, 2009, 239(11): 2317-2325.
  • 4Tian Wenxi, Ishiwatari Yuki, Oka Yoshiaki. Numerical Computation of Thermally Controlled Steam Bubble Condensation Using Moving Particle Semi-implicit (MPS) Method[J]. Annals of Nuclear Energy, 2010, 37(1): 5-15.
  • 5Grace J R. Shapes and Velocities of Bubbles Rising in Infinite Liquids[J]. Transaction of the Institute of Chemi- cal Engineering, 1973, 51: 116-120.
  • 6徐济望 贾斗南.沸腾传热和气液两相流[M].北京:原子能出版社,2001.183-205.
  • 7于平安 朱瑞安 鲁神琪.核反应堆热工分析[M].北京:原子能出版社,1988.55-60.
  • 8CINOTTI L, GHERARDI G. The Pb Bi cooled XADS status of development[J]. J Nucl Mater, 2002, 301(1): 8-14.
  • 9MIKITYUK K, VASILIEV A, FOMICHENKO P, et al. Safety parameters of advanced RBEC M lead-bismuth cooled fast reactor[C] // Proceed ings of International Conference on the New Frontiers of Nuclear Technology.. Reactor Phys ics, Safety and High Performance Computing, PHYSOR-2002. Seoul, Korea: [s. n.], 2002.
  • 10SUZUKI T, CHEN X N, RINEISKI A, et al. Transient analyses for accelerator driven system PDS-XADS using the extended SIMMER-Ill code [J].Nuclear Engineering and Design, 2005, 235 (24): 2 594-2 611.

共引文献23

同被引文献25

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部