期刊文献+

粗糙度对岩石热红外光谱解混影响的实验研究 被引量:3

A Study on the Effects of Roughness on Thermal Infrared Spectral Unmixing of Rock
下载PDF
导出
摘要 现有的岩石热红外光谱解混,大多针对颗粒岩石,无法满足自然界块状岩石高精度光谱解混的要求。研究将粗糙度作为影响光谱发射率与解混精度的考虑因素,研究块状岩石的热红外光谱解混问题。以自然岩石表面形态为依据,设计了三个粗糙度等级;顾及到岩石的结构情况,采用矿物块体拼接的方法模拟制作了3种块状岩石;通过相同和不同粗糙度的解混实验,来研究自然界块状岩石的表面粗糙度对岩石光谱特征和光谱解混的影响规律。结果表明,当矿物端元与岩石在相同粗糙度下光谱线性解混时,效果较好;而在不同粗糙度下解混时,60个解混结果中有48.3%误差超过5%,最大达到25.3%。基于此,建议在实际岩矿高光谱定量遥感中,应该充分考虑粗糙度对光谱解混的影响。 The current unmixing of rock thermal infrared spectrum mostly focuses on granule forms,which can't meet the requirements of high accuracy when applied to natural massive rocks.This paper aims to study the influence of rock surface roughness on spectral unmixing,which will influence the spectral emissivity and unmixing accuracy.Three grades of roughness were defined according to the natural rock surface morphology,and according to their structural forms,three kinds of samples were simulated by the method of mineral block mosaicking.The effects of roughness level on rock spectrum and unmixing were investigated by unmixing experiments using the same and different roughness grades.The results showed that good unmixing could be achieved when the mineral endmember and rock shared the same roughness,while in terms of different roughness grades,48.3% of the 60 unmixing results presented errors over 5%,and the maximum was 25.3%.Therefore,we suggest that the effects of roughness on spectral unmixing should be completely considered in the quantitative hyperspectral remote sensing of natural massive rock.
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2017年第10期3051-3057,共7页 Spectroscopy and Spectral Analysis
基金 国家自然科学基金项目(41440032)资助
关键词 块状岩石 模拟岩石 粗糙度 解混误差 Massive roek Simulated rock Roughness Unmixing error
  • 相关文献

参考文献3

二级参考文献21

  • 1栗二孬,王谦源,魏晋龙.关于节理面分形的探讨[J].西部探矿工程,2006,18(8):147-148. 被引量:1
  • 2聂笃宪,曾文曲,文有为.分形维数计算方法的研究[J].微机发展,2004,14(9):17-19. 被引量:35
  • 3夏才初.岩石结构面的表面形态特征研究[J].工程地质学报,1996,4(3):71-78. 被引量:26
  • 4Christensen P R, Bandfield J L, Hamihon V E. A thermal emission spectral library of rock-forming minerals [J]. Journal of Geophysical Research, 2000, 105(E4): 9735-9739.
  • 5Johnson P M. Smith M O, Adams J B. Simple algorithms for remote determination of mineral abundances and particle sizes from reflectance spectra[J]. Journal of Geophysical Research, 1992, 97(E2): 2649-2657.
  • 6Clark R N. Spectral properties of mixtmvs of montmorillonite and dark carbon grains: Implicatinns for remote sensing minerals containing chemically and physically adsorbed water [J]. Journtd of Geophysictd Research, 1983, 88(B12): 10635-10644.
  • 7Ramsey M S, Christensen P R. Mineral abundance determination: Quantitative deconvolution of thermal emission spectra [J]. Journal of Geophysictd Research, 1998, 103(BI): 577-596.
  • 8Mathew G, Nair A, Rao T K, et al. Laboratory technique for quantitative thermal emissivity measurements of geological samples[J]. J Earth Syst Sci, 2009, 118(4): 391-404.
  • 9Wyatt M B, Hamilttm V E, Mesween H Y. et al. Analysis of terrestria and Martian volcanic compositions using thermal emission spectroscopy 1. Determination of mineralogy, chemistry and classification strategies[J]. Journalof Geophysictd Research, 2001, 106(E7): 14711-14732.
  • 10Thomson J L, Salisbury J W. The mid-infrared reflectance of mineral mixtures (7-14um)[J]. Remote Sensing of Environment, 1993, 45(1): 1- 13.

共引文献27

同被引文献76

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部