期刊文献+

基于同步多维数据流的脑网络动态特征辨识方法研究 被引量:4

Research of dynamic characteristic identification method for human brain network based on multidimensional synchronization data flow
下载PDF
导出
摘要 针对人脑实时变化的特性,为了更好地观测和描述人脑网络的动态特征,在基于功能磁共振成像的脑功能网络重构技术基础上,给出了一种人脑网络动态特征辨识方法。首先利用同步多维数据流的即时更新能力,将在静息态功能磁共振成像数据采集区间上的血氧水平依赖信号由大时间序列分解重构为每个采样点上的小时间窗口序列,构建连续时间点上的状态观测窗口,从而实现对人脑功能共振信号的特定时间状态辨识;然后运用相关分析对状态观测窗口信号进行分析,得到单状态观测矩阵,最终构建全脑在整个数据采集区间上的动态特征矩阵。实验结果显示该方法可以为人脑网络的动态特征观测和描述提供一种有效手段,也为进一步研究人脑网络的动态特征演变奠定了基础。 Focusing on the real-time change characteristic of the human brain, this paper proposed a dynamic characteristic identification method to extract and describe the dynamic properties of the human brain network based on functional magnetic resonance imaging technology. Firstly, the method used multidimensional synchronization data flow analysis technology with real-time updating capability to decompose the blood oxygen level-dependent signal sequences on the whole data acquisition time into small time windows sequences on each sample point. Then it got the continuous state observer windows which could realize the specific time point status extraction of the human brain functional magnetic resonance signal. Secondly, it used a correlation analysis technology to analyze the signals in adjacent state observer windows to obtain a single state observer matrix which could describe the state in a single sample point. Finally, it had the entire dynamic feature matrix during the data collection by combining multiple state observer matrix. The experiment results show this method provides an effective means for dynamic characteristic observation and description of human brain functional network and also gives foundations for further study for human brain network dynamic properties.
出处 《计算机应用研究》 CSCD 北大核心 2017年第11期3272-3276,共5页 Application Research of Computers
基金 国家自然科学基金资助项目(61263017) 昆明理工大学人才培养基金资助项目(201303120)
关键词 动态特征辨识 多维同步数据流 脑功能网络 磁共振成像 dynamic characteristic identification multidimensional synchronization data flow brain functional network magnetic resonance imaging
  • 相关文献

参考文献9

二级参考文献219

  • 1郑军,胡铭曾,云晓春,郑仲.基于数据流方法的大规模网络异常发现[J].通信学报,2006,27(2):1-8. 被引量:17
  • 2王伟平,李建中,张冬冬,郭龙江.基于滑动窗口的数据流连续J-A查询的处理方法[J].软件学报,2006,17(4):740-749. 被引量:18
  • 3郭山清,谢立,曾英佩.入侵检测在线规则生成模型[J].计算机学报,2006,29(9):1523-1532. 被引量:14
  • 4王林,张婧婧.复杂网络的中心化[J].复杂系统与复杂性科学,2006,3(1):13-20. 被引量:61
  • 5刘旭,毛国君,孙岳,刘椿年.数据流中频繁闭项集的近似挖掘算法[J].电子学报,2007,35(5):900-905. 被引量:14
  • 6Lee W, Stolfo S J. Data mining approaches for intrusion detection [C] //Proc of the 7th USENIX Security Symposium. Berkeley, USA: USENIX Assoc, 1998: 79-93
  • 7Lee W, Stolfo S J. A framework for constructing features and models for intrusion detection systems [C] //ACM Trans on Information and System Security. New York: ACM Press, 2000:227-261
  • 8EI-Semary A, Edmonds J, Gonzalez Pino J. Applying data mining of fuzzy association rules to network intrusion detection[C] //Proc of 2006 IEEE Information Assurance Workshop. Piscataway, NJ : IEEE, 2006 : 100-107
  • 9Pornoy L. Intrusion detection with unlabeled data using clustering [C] //Proc of ACM CSS Workshop on Data Mining Applied to Security. New York: ACM, 2001
  • 10Zanero S, Sacaresi S M. Unsupervised learning techniques for an intrusion detection system [C]//Proc of the 2004 ACM Symp on Applied Computing. New York: ACM, 2004

共引文献235

同被引文献18

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部