期刊文献+

k-匿名改进模型下的LCSS-TA轨迹匿名算法 被引量:1

LCSS-TA trajectory anonymity algorithm based on improved k-anonymity model
下载PDF
导出
摘要 传统的欧几里德距离度量函数计算轨迹相似性时,要求轨迹的每个位置点都要有对应点。由于噪声点的存在,导致轨迹距离出现较大偏差,降低轨迹相似性,增加轨迹的信息损失。针对这一问题,结合LCSS(最长公共子序列)距离函数和(k,δ)-匿名模型设计了LCSS-TA(最长公共子序列轨迹匿名)算法。该算法通过将轨迹位置点之间的距离映射成0或1来减小噪声点可能导致的较大距离。在合成数据集和含噪声的数据集下的实验结果表明,提出的算法在满足轨迹k-匿名隐私保护的基础上,可以有效降低噪声干扰,减少轨迹的信息损失。 In traditional trajectory similarity calculation based on the Euclidean distance metric function, position of each point in the trajectory are required to have a corresponding point. The existence of noises could lead to track a larger distance deviation, reduce the trajectory similarity, increase trajectory information loss. In order to solve this problem, this paper designed LCSS-TA( longest common subsequences trajectory anonymity)algorithm combining with LCSS( longest common subsequences) distance function and (k, δ)-anonymity model. The algorithm could decrease the greater distance of the noises might to lead by mapping the distance between trajectory locations points to 0 or 1. In synthetic data set and data set with noise, the experiment results show that the algorithm can reduce noises interference and decrease the trajectory information loss on the basis of meeting with k-anonymity privacy protection.
作者 郑剑 刘聪
出处 《计算机应用研究》 CSCD 北大核心 2017年第11期3428-3431,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(61462034 61563019) 江西省教育厅科学技术研究资助项目(GJJ13415) 江西理工大学科研基金重点课题(NSFJ2014-K11)
关键词 轨迹数据 隐私保护 噪声点 LCSS距离度量函数 (k δ)-匿名模型 trajectory data privacy protection noises LCSS distance metric function (k, δ) -anonymity model
  • 相关文献

参考文献11

二级参考文献283

  • 1潘晓,肖珍,孟小峰.位置隐私研究综述[J].计算机科学与探索,2007,1(3):268-281. 被引量:65
  • 2Mokbel M F, Chow C Y, Aref W G. The new Casper: Query processing for location services without compromising privacy [C] //Proc of the 32nd Int Conf on Very Large Data Bases (VLDB). New York: ACM, 2006:763-774.
  • 3Chow C, Mokbel M F. Enabling privacy continuous queries for revealed user locations [C]//LNCS 4605 : Proc of the Int Syrup on Advances in Spatial and Temporal Databases (SSTD). Berlin: Springer, 2007.
  • 4Gruteser M, Grunwal D. Anonymous usage of location-based services through spatial and temporal cloaking [C] //Proe of the Int Conf on Mobile Systems, Applications, and Services (MobiSys). New York: ACM, 2003:163-168.
  • 5Xiao Zhen, Xu Jianliang, Meng Xiaofeng. P-sensitivity: A semantic privacy-protection model for location-based services [C] //Proc of the 2nd Int Workshop on PriVacy-Aware Location-Based Mobile Services(PALMS). Piscataway, NJ: IEEE, 2008:47-54.
  • 6Bamba B, Liu L. Supporting anonymous location queries in mobile environments with privacy grid [C] //Proc of Int Conf on World Wide Web (WWW). New York: ACM, 2008: 237-246.
  • 7Kido H, Yanagisawa Y, Satoh T. Protection of location privacy using dummies for location-based services [C]//Proc of the 26th Int Conf on the Physics of Semiconductors (ICPS). Piseataway, NJ: IEEE, 2005: 1248-1248.
  • 8Ghinita G, Kalnis P, Khoshgozaran A, et al. Private queries in location based services: Anonymizers are not necessary [C] //Proe of ACM SIGMOD 2008. New York: ACM, 2008.
  • 9Xu T, Cai Y. Location anonymity in continuous location based services [C]//Proc of Int Symp on Advances in Geographic Information Systems(GIS). New York: ACM, 2007.
  • 10Brinkhoff T. A framework for generating network-based moving objects [J]. An Int Journal on Advances of Computer Science for Geographic Information Systems (Geolnformatica), 2002, 6(2): 153-180.

共引文献711

同被引文献39

引证文献1

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部