摘要
为了减少机器在非加工状态时的能耗,采用机器关闭再开启的决策方案来实现此目的.首先建立目标为总能耗和最大完工时间最小化的车间节能调度模型,并将此决策方案抽象为约束条件,然后提出一种基于混合元胞遗传模拟退火算法的求解方法,引入插入式贪婪解码算法进行解码,基于同步机制的遗传操作更新种群,增加模拟退火操作与收敛准则实现进一步优化.最后通过案例验证了该模型与算法的有效性与实用性,结果表明运用该模型可达到很好的节能优化效果.
To reduce energy consumption under machine non-working condition, the decision method of ma- chine is closed and then opened to achieve this goal. First, a multiobjective jop-shop optimization model based on this decision method is put forward, in which the energy consumption and makespan are considered. Then, a cellular genetic algorithm-simulating annealing algorithm (CGA-SA) is designed, with using insert greedy decoding algorithm, updating population by genetic operation based on synchronization, increasing simulated annealing and convergence criterion to improve searching performance. Finally, the effectiveness and practica- bility of model and algorithm are verified by case study. The results show that the model can achieve a good energy saving effect.
作者
吴正佳
华露
白炜铖
涂晶鑫
刘秀凤
徐峥
Wu Zhengjia Hua Lu Bai Weicheng Tu Jingxin Liu Xiufeng Xu Zheng(College of Mechanical & Power Engineering, China Three Gorges Univ. , Yichang 443002, Chin)
出处
《三峡大学学报(自然科学版)》
CAS
2017年第5期100-105,共6页
Journal of China Three Gorges University:Natural Sciences
基金
湖北省自然科学基金资助项目(2014CFB686)
关键词
节能
多目标
作业车间调度
混合元胞遗传模拟退火算法
energy saving
multiobjective
jop-shop scheduling
cellular genetic algorithm-simulated an- nealing algorithm