期刊文献+

面向高光谱图像分类的半监督空谱判别分析 被引量:5

Semi-supervised Spatial-spectral Discriminant Analysis for Hyperspectral Image Classification
下载PDF
导出
摘要 为充分利用高光谱图像蕴藏的空间信息提升分类精度,提出了面向高光谱图像分类的半监督空谱判别分析(S3 DA)算法。考虑高光谱图像数据集的空间一致性,首先利用少量标记样本定义类内散度矩阵,保存数据集同类像元的光谱近邻结构;再利用无标记样本定义空间近邻像元散度矩阵,揭示像元间的空间近邻结构和地物的空间分布结构信息。S3 DA既保持数据集在光谱域的可分性,又保存了无标记样本蕴藏的空间域近邻结构,增强了同类像元和空间近邻像元在投影子空间的聚集性,从而提升分类性能。在PaviaU和Indian Pines数据集的试验表明,总体分类精度分别达到81.50%和71.77%。与传统的光谱方法比较,该算法能有效提升高光谱图像数据集的地物分类精度。 In order to make full use of the spatial information embedded in the hyperspectral image to improve the classification accuracy,a semi-supervised spatial-spectral discriminant analysis(S3 DA)algorithm for hyperspectral image classification is proposed.According to the spatial consistency property of hyperspectral image,the intra-class scatter matrix infered from a little labeled samples preserves the spectral similarity of the same class pixels,while the spatial local pixel scatter matrix defined by the unlabeled spatial neighbors uncovers the spatial-domain local pixel neighborhood structures and the ground objects detailed distribution.The S3 DA method not only maintains the spectral-domain separability of the data set,but also preserves the spatial-domain local pixel neighborhood structure,which promotes the compactness of the same class pixels or the spatial neighbor pixels in the projected subspace and enhances the classification performance.The overall classification accuracies respectively reach 81.50%and 71.77%on the PaviaU and Indian Pines data sets.Compared with the traditional spectral methods,the proposed method can effectively improve ground objects classification accuracy.
出处 《测绘学报》 EI CSCD 北大核心 2017年第9期1098-1106,1115,共10页 Acta Geodaetica et Cartographica Sinica
基金 国家自然科学基金青年科学基金(61401471) 中国博士后科学基金(2014M562636)~~
关键词 高光谱图像分类 特征提取 判别分析 空谱联合 半监督学习 空间近邻 hyperspectral image classification feature extraction discriminant analysis spatial-spectral semi-supervised learning spatial neighbors
  • 相关文献

参考文献5

二级参考文献58

  • 1李慧,王云鹏,李岩,王兴芳.基于SVM和PWC的遥感影像混合像元分解[J].测绘学报,2009,38(4):318-323. 被引量:15
  • 2金义雄,程浩忠,严健勇,张丽.改进粒子群算法及其在输电网规划中的应用[J].中国电机工程学报,2005,25(4):46-50. 被引量:89
  • 3黄昕,张良培,李平湘.基于多尺度特征融合和支持向量机的高分辨率遥感影像分类[J].遥感学报,2007,11(1):48-54. 被引量:48
  • 4Rodarmel C, Shah J. Principal component analysis for hyperspectral image classification [J]. Surveying and Land Information Systems, 2002, 62(2): 115-122.
  • 5Etemad K, CheUappa R. Discriminant analysis for recognition of human face images [J]. Journal of Optical Society of America A, 1997, 14(8): 1724-1733.
  • 6Schoikopf B, Skola A, Muller K R. Nonlinear component analysis as a kernel eigenvalue problem [J]. Neural Computation, 1998, 10(5): 1299-1319.
  • 7Mika S, Ratsch G, Weston J, et al. Fisher discriminant analysis with kernels [C]//Proceedings of the 1999 IEEE Signal Processing Society Workshop, 1999: 41-48.
  • 8Bachmann C M, Ainsworth T L, Fusina R A. Exploiting manifold geometry in hyperspectral imagery [JJ. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43 (3): 441-454.
  • 9Kim D H, Finkel L H. Hyperspectral image processing using locally linear embedding [C]//Proceedings of the 1st International IEEE EMBS Conference on Neural Engineering,2003: 316-319.
  • 10Tian Han, Goodenough D G. Nonlinear feature extraction of hyperspectral data based on locally linear embedding (LLE) [C]//Proceedings of Geoscience and Remote Sensing Symposium, 2005: 1237-1240.

共引文献45

同被引文献24

引证文献5

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部