期刊文献+

基于马尔可夫时变模型的流量数据挖掘 被引量:2

Traffic Data Mining Based on Markov Time Varying Model
下载PDF
导出
摘要 随着网络技术的快速发展,目前网络的规模很大且有较大的复杂性,因此网络管理变得越来越困难和复杂,因此流量预测在网络管理中发挥越来越重要的作用。针对实际网络中收集到的大量实际流量数据,提出了一种基于时变网络的自适应网络流量预测算法,采用自适应学习率法,根据总误差增减变化趋势以及不同的改变来调整适应率;然后根据正向和反向的计算来校正各层的权重。仿真结果表明,与传统的时变网络相比,基于传播时变网络的自适应流量预测算法在预测结果中具有更好的性能,并具有较小的误差。 With the rapid development of network technology, the network management becomes more and more difficult and complex. The traffic prediction plays an increasingly important role in network management. For a large number of actual traffic data collected from the actual network, this paper presents a prediction algorithm based on time-varying network adaptive network traffic. According to the change trend of total error and adjust to different change rate, the algorithm is an adaptive learning rate method with the calculation of the forward and reverse to correct the weight of each layer. The simulation results show that compared with the traditional time varying network, the adaptive flow prediction algorithm based on the propagation time-varying network has better performance and smaller error in the prediction results.
出处 《软件》 2017年第9期8-11,共4页 Software
基金 中兴通讯产学研合作论坛合作项目"基于马尔可夫时变模型的流量数据挖掘技术研究"(2016ZTE04-11)
关键词 时变模型 马尔科夫 流量数据挖掘 Time varying model Markov Traffic data mining
  • 相关文献

参考文献5

二级参考文献80

  • 1张立蕊,万江文.无线传感器网络抗攻击的安全定位算法[J].新型工业化,2013,2(3):1-7. 被引量:20
  • 2权东晓,裴昌幸,朱畅华,刘格非.基于Libnet的网络流量产生器的设计与实现[J].现代电子技术,2005,28(20):22-24. 被引量:4
  • 3廖有清,张小平,许学东.10G网络测试仪的测试流量生成[J].小型微型计算机系统,2007,28(3):411-415. 被引量:8
  • 4张铮,赵荣彩,邰铭,单征.一种灵活的基于网络处理器的流量生成方法[J].计算机工程与应用,2007,43(21):137-140. 被引量:2
  • 5Nielsen J.Nielsen's Law of Internet Bandwidth[OL]. [2011-03-01].http://www.useit.com/alertb ox/980405. html.
  • 6SHEN Anle.A 100 g era of backbone network[N]. Huawei Technologies.2010.
  • 7ITU World Telecommunication/ICT Indicators Data-base [OL].[2011-03-01].http://www.itu.int/ITU-D/ict/m aterial/FactsFigures2010.pdf.
  • 8CNNIC.27 times China Internet network development state statistic report[OL].[2011-03-01].http://www.cnnic. net.cn/.
  • 9Z.Li,R.Yuan,and X.Guan,"Accurate classification of the intemet traffic based on the svm method[J]".in Communications,2007.ICC' 07.IEEE International Conference on.IEEE,2007,pp.1373-1378.
  • 10N.Jing,M.Yang,S.Cheng,Q.Dong,and H.Xiong, "An efficient svm-based method for multi-class network traffic classification[J]".in Performance Compu-ting and Communications Confference(IPCCC),2011 IEEE 30th International.IEEE,2011,pp.1-8.

共引文献29

同被引文献22

引证文献2

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部