期刊文献+

热还原石墨烯的制备及其对重金属Pb^(2+)的吸附性 被引量:11

Preparation of Graphene via Thermal Reduction and Its Adsorption Capacity for Heavy Metal Pb^(2+)
下载PDF
导出
摘要 利用瞬时加热还原氧化石墨的方法制备石墨烯,将热还原的石墨烯用于吸附水中的重金属Pb2+,研究接触时间和pH值对吸附的影响。结果表明:pH值很大程度上影响了石墨烯的吸附性能,pH值大于7时吸附量显著增加,并在5min内达到平衡。透射电子显微镜和扫描电子显微镜分析表明石墨烯的片层很薄,层数较少。采用Langmuir和Freundlich吸附等温式拟合实验数据,Langmuir吸附等温式计算出的最大理论吸附量为86.5mg/g,相关系数R2为0.9982,Langmuir常数KL为10.7,与实验结果更接近。表明石墨烯具有超强的吸附能力,以单分子层的化学吸附为主。吸附动力学符合准二级动力学模型。 Graphene(GR)was obtained by reduced graphite oxide(GO)by instantaneous heating.Thermal reduced graphene was used to adsorb heavy metal Pb2+ions in water to study the effect of adsorption time and pH value on the adsorption.The results show that the pH value greatly affects the adsorption capacity of graphene.When pH value is higher than 7,the adsorption capacity obviously increases.And the equilibrium reaches within five minutes.The analysis by scanning electron microscope(SEM)and transmission electron microscope(TEM)shows that graphene flake is very thin and with less layers.Experimental data are fitted by Langmuir and Freundlich adsorption isotherms model.According to the Langmuir adsorption isotherms model,the maximum theoretical adsorption capacity of Pb2+is 86.5 mg/g,the correlation coefficient R2 is 0.9982,and Langmuir constant KLis equal to 10.7.The Langmuir model agrees well with experimental data.It demonstrates that the adsorption reaction is a fast single molecular layer chemical process.The adsorption kinetics is better fitted to the pseudo-second-order kinetic model.
出处 《材料工程》 EI CAS CSCD 北大核心 2017年第10期6-11,共6页 Journal of Materials Engineering
基金 江西省科技厅攻关项目资助(Z02727)
关键词 热还原 石墨烯 吸附性能 重金属Pb2+ thermal reduction graphene adsorption capacity heavy metal Pb^2+
  • 相关文献

参考文献3

二级参考文献115

  • 1Allen M j ,Tung V C,Kaner R B. Honeycomb carbon : A re-view of graphene[j]. Chem Rev,2010,110(1) .132.
  • 2Geim A K, Novoselov K S. The rise of graphene[Jj. NatMater,2007,6(3):183.
  • 3Wallace P R. The band theory of graphite [J]. Phys Rev,1947,71(9):622.
  • 4Slonczewski J C, Weiss P R. Band structure of graphite [J].Phys Rev,1958,109(2):272.
  • 5#NAME?oselov K S,Geim A K, Morozov S V, et al. Electricfield effect in atomically thin carbon films [J]. Science,2004,306(5696):666.
  • 6LeeC, Wei X D,Kysar J W,et al. Measurement of the elasticproperties and intrinsic strength of monolayer graphene[J].Science,2008,321(5887) :385.
  • 7Balandin A A,Ghosh S, Bao W Z,et al. Superior thermalconductivity of single-layer graphene[J]. Nano Lett,2008,8.(3):902.
  • 8Nair R R,Blake P,Grigorenko A N,et aL Fine structure con-stant defines visual transparency of graphene [J]. Science,2008,320(5881):1308.
  • 9Novoselov K S,Jiang Z,Zhang Y, et al. Room-temperaturequantum hall effect in graphene [ J].Science,2007,315(5817):1379.
  • 10Doretto R L,Smith C M. Quantum hall ferromagnetism ingraphene: SU (4) bosonization approach [J]. Phys Rev B,2007,76(19):195431.

共引文献24

同被引文献85

引证文献11

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部