期刊文献+

阳极氧化法制备铝基超疏水涂层及其稳定性和耐蚀性的研究 被引量:10

Fabrication of Aluminum-based Superhydrophobic Coating by Anodization and Research on Stability and Corrosion Resistance
下载PDF
导出
摘要 铝由于在潮湿的环境中很容易受到污染和损坏,从而严重影响了其美观性和用途。为了改善铝基材料的耐腐蚀性能,采用电化学阳极氧化法与十四酸修饰相结合的方式在铝基底上制备了超疏水涂层。通过场发射扫描电镜(FESEM)和X射线能量色散光谱(EDS)对涂层表面形貌和化学组成进行了表征。同时利用接触角测量仪、喷砂实验和电化学测试分别对涂层表面的润湿性、机械稳定性以及耐腐蚀性能进行了研究。结果表明:当阳极氧化电压为20V时,所制备的涂层为最佳铝基超疏水涂层,此时涂层的接触角为(155.2±0.5)°,滚动角为(3.5±1.3)°。其对应的腐蚀电流密度较铝基底降低了2个数量级,腐蚀电位从-0.629V正移到-0.570V,呈现出优异的耐腐蚀性能。此外,该涂层还具有良好的机械稳定性。 Aluminum(Al)can be easily contaminated or damaged after exposure in damp environments,which can adversely affect its aesthetic appearance and desired functionalities.To improve its corrosion resistance,a superhydrophobic coating was fabricated on Al by electrochemical anodization followed by modification with myristic acid.The surface morphology and chemical composition were characterized by using a field emission scanning electron microscope(FESEM)with attached energy dispersive X-ray spectrum(EDS).The surface wettability,mechanical stability as well as corrosion resistance were also investigated by contact angle measuring system,sandblasting test and electrochemical measurements.The results show that the optimal Al-based superhydrophobic coating with a static water contact angle of(155.2±0.5)°and a sliding angle of(3.5±1.3)°is obtained at the anodization voltage of 20 V.The corresponding corrosion current density(Icorr)is reduced by 2 orders of magnitude and the corrosion potential(Ecorr)shifts from-0.629 Vto-0.570 Vcompared to the bare Al substrate,indicating excellent corrosion resistance.Besides,the as-prepared optimal Al-based superhydrophobic coating also suggests good mechanical stability.
出处 《材料工程》 EI CAS CSCD 北大核心 2017年第10期71-78,共8页 Journal of Materials Engineering
基金 江苏高校优势学科建设工程资助项目(PAPD-062) 南航-中联科技电子新材料联合实验室基金资助项目(201503)
关键词 超疏水涂层 阳极氧化 耐蚀性 稳定性 superhydrophobic coating aluminum anodization corrosion resistance stability
  • 相关文献

参考文献5

二级参考文献117

  • 1桑义敏,李发生,何绪文,谷庆宝.含油废水性质及其处理技术[J].化工环保,2004,24(z1):94-97. 被引量:54
  • 2LI X M, REINHOUDT D, CALAMA M C. What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces[J].Chemical Society Reviews, 2007, 36(8):1350- 1368.
  • 3GAO X F, JIANG L. Water-repellent legs of water striders[J]. Nature, 2004, 432(4) :36.
  • 4ONDA T, SHIBUICHI S, SATOH N, et al. Super-water repellent fractal surfaces [J]. Langmuir. 1996,12(9):2125-2127.
  • 5BARTHLOTT W, NEINHUIS C. Purity of the sacred lotus or escape from contamination in biological surfaces [J]. Planta, 1997, 202(1):1-8.
  • 6NEINHUIS C. BARTHLOTT W. Characterization and distribution of water repellent.self-cleaning plant surfaces[J]. Annals of Botany. 1997.79 (6):667- 677.
  • 7FENG L, LI S H. LI Y S, et al. Super hydrophobic surfaces: from natural to artificial [J]. Advanced Materials, 2002, 14(24) : 1857 -1860.
  • 8WANG H, TANG L. M, WU X M, et al. Fabrication and ant frosting performance of superhydrophobic coating based on mod lied nano sized calcium carbonate and ordinary polyacrylate[J].Applied Surface Science, 2007, 253(2):8818-8824.
  • 9FURSTNER R, BARTHLOTT W. Wetting and self cleaning properties of artificial superhydrophobic surfaces[J].Langmmr. 2005, 21(3):956 -961.
  • 10MCHALEG,SHIRTCLIFFENJ, EVANSCR, et al Terminal velocity and drag reduction measurements on superhydrophobic spheres [J]. Applied Physics Letters, 2009,94(6) :064104.

共引文献52

同被引文献113

引证文献10

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部