期刊文献+

自同态环是NJ环的模及强NJ模的自同态环

Modules with NJ Endomorphism Ring and Endomorphism Rings of Strongly NJ Module
下载PDF
导出
摘要 讨论了自同态环是NJ环的模以及强NJ模的自同态环.证明了abelian环上的投射模,若其自同态环是NJ环,则该模是强NJ模.通过例子说明了强NJ模的自同态环不一定是NJ环,证明了有限生成的强NJ模的自同态环是exchange环.证明了自同态环是NJ环的模,其直和项的自同态环也是NJ环. The objec t of this paper is discussing the modules wi th NJ endomorphism r ing and endomor-phism rings of st rongly NJ module. It is proved that a project module on abel ian rings wi th NJ endomor-phism rings is st rongly NJ module. It is shown through examples that the endomorphism rings of st rongly NJ module is not necessari ly be NJ ring,and the endomorphism rings of fini te generated st rongly NJ module is exchange ring. It is proved that endomorphism ring is NJ rings module, the direct summand is also NJ en-domorphism ring.
出处 《湘潭大学自然科学学报》 北大核心 2017年第3期5-8,共4页 Natural Science Journal of Xiangtan University
基金 河套学院自然科学青年项目(HTXYZQ13003)
关键词 NJ环 自同态环 强NJ模 EXCHANGE环 NJ ring endomorphism ring st rongly NJ module exchange ring
  • 相关文献

参考文献1

二级参考文献7

  • 1Nicholson W K. Rings whose Elements are Quasi-regular or Regular. Equationes Mathematicae 1973, 9(1): 64-70.
  • 2Ware R. Endomorphism Rings of Projective Modules. Trans.Amer.Math.Soc., 1971,155 (1971) 233-256.
  • 3Zelmanowitz J. Regular Modules. Trans.Amer.Math.Soc., 1972, 163(1972): 341-355.
  • 4Azumaya G. Some Characterizations of Regular Modules. Publications Matemtiques 1990 34(2) 241-248.
  • 5Anderson F W and Fuller K R. Rings and Categories of Modules. 2版.北京:世界图书出版公司北京公司,1992,59-76.
  • 6Osba E A, Henriksen M and Alkam O. Combining Local and Von Neumann Regular Rings. Comm.Algebra 2004, 32(7): 2639-2653.
  • 7Jayaraman M and Vanaja N. Generalization of Regular Modules. Comm.Algebra, 2007, 35(11): 3331-3345.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部