期刊文献+

锂离子电池成膜添加剂丙烯基-1,3-丙磺酸内酯还原机理研究 被引量:1

The Reductive Mechanism of Prop-1-ene-1,3-sultone as Solid Electrolyte Interphase Film-forming Additive for Lithium Ion Battery
下载PDF
导出
摘要 采用密度泛函理论方法研究了锂离子电池成膜添加剂丙烯基-1,3-丙磺酸内酯(PES)的还原机理.通过B3LYP/6-311++G(d,p)水平的密度函数理论与偏振连续模型(PCM)理论计算结果表明,PES的还原活性优于碳酸丙烯酯(PC),PES较PC优先通过所获得的前线分子轨道能量和电子亲和能被还原形成PES+e.由于PES+e的结构是不稳定的,易于通过破坏C1—O2或O2—S7键而自发重排形成PES-1或PES-2.通过振动频率分析和内反应坐标(IRC)方法优化和确认PES的过渡态(TS).使用自然键轨道(NBO)方法在DFT的B3LYP/6-311++G(d,p)水平上分析沿着最小能量路径(MEP)的稳定点的键顺序和原子电荷分布.基于结构,键顺序和电荷分布结果分析,负电荷大部分分布在PES+e中的—SO2基团上,因此PES+e的成膜机理经历C1—O2或O2—S7的断裂形成稳定的开环环状阴离子自由基(PES-1或PES-2). The mechanism for the reduction of Prop-1-ene-1,3-sultone(PES) on anode of lithium ion battery is understood by theoretical calculation at the B3LYP/6-311++G(d, p) level of density functional theory with the polarized continuum models(PCM). It is found that PES in solvent is reduced prior to PC to form PES+e by the obtained frontier molecular orbital energy and electron affinity. The structure of PES+e is unstable, and prone to a spontaneous rearrangement to form PES-1 or PES-2 by the breaking of C1—O2 or O2—S7. The transition state(TS) is optimized and confirmed by vibrational frequency analysis and intrinsic reaction coordinate(IRC) method.The bond orders and atomic charge distribution of the stable points along the minimum energy path(MEP) are analyzed using the natural bond orbital(NBO) method at the B3LYP/6-311++G(d, p) level of DFT. The negative charge is mostly distribution on —SO2 group in PES+e, based on the structures, bond order and Charge distribution analyses, and it is known that PES+e experiences the breaking of C1—O2 or O2—S7 to form a stable open cyclic anion radical(PES-1 or PES-2).
出处 《广东工业大学学报》 CAS 2017年第5期86-90,共5页 Journal of Guangdong University of Technology
基金 国家自然科学基金资助项目(21273084) 国家自然科学基金青年基金资助项目(21303061)
关键词 锂离子电池 碳酸丙烯酯 PES 还原机理 密度泛函理论 lithium ion battery propylene carbonate prop-1-ene-1,3-sultone reduction mechanism density functional theory (DFT)
  • 相关文献

参考文献1

二级参考文献23

  • 1Zuo P J,Yin G P.Electrochemical reaction of the SiMn/C composite for anode in lithium ion batteries[J].Electrochemical Acta,2006,52(4):1527-1531.
  • 2Ng S H,Wang J.Spray-pyrolyzed silicon/disordered carbon nano-composites for lithium-ion battery anodes[J].Journal of Power Sources,2007,174(2):823-827.
  • 3Kolb R,Fasel C.SiCN/C-ceramic composite as anode material for lithium ion batteries[J].Journal of the European Ceramic Society,2006,26(16):3903-3908.
  • 4Tarascon J M,Armand M.Issues and challenges facing rechargeable lithium batteries[J].Nature,2001,414:359-367.
  • 5Armand M,Tarascon J M.Building better batteries[J].Nature,2008,451:652-657.
  • 6Kim H,Han B,Cho J,et al.Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries[J].Angew Chem Int Ed,2008,47 (52):10151-10154.
  • 7Graetz,J,Ahn C C,Yazami R.et al.Highly reversible lithium storage in nano structured silicon[J].Electrochemical Solid-State Letter,2003,6(9):A194-A197.
  • 8Kasavajjula U,Wang C S,Appleby A J.Nano-and bulk silicon-based insertion anodes for lithium-ion secondary cells[J].J Power Sources,2007,163 (2):1003-1039.
  • 9Wu H,Chan G,Choi J W,et al.Stable cycling of doublewalled silicon nano tube battery anodes through solid-electrolyte inter-phase control[J].Nat Nanotechnol,2012,7:310-315.
  • 10Takamura T,Ohara S,Uehara M,et al.A vacuum deposited Si film having a Li extraction capacity over 2000mAh/g with along cycle life[J].J Power Sources,2004,129(1):96-100.

共引文献6

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部