期刊文献+

基于改进决策树算法的汽车销售数据挖掘 被引量:1

Car Sales Data Mining Based on Improved Decision Tree Algorithm
下载PDF
导出
摘要 决策树分类算法是数据挖掘中最基本也是最重要的算法之一。目前,数据挖掘技术被广泛应用在商业领域中。在汽车产品销售系统中,引入数据挖掘技术,可以为汽车销售的经营决策提供科学依据。本文收集某汽车品牌安徽地区近一年的销售数据进行集成和数据预处理;之后采用数据挖掘技术中的改进决策树算法,对汽车销售数据仓库分析和应用,预测影响汽车的销售的主要因素,从而制定汽车的营销策略,帮助企业得到更好的收益。 Decision tree classification algorithm is one of the most basic and important algorithms in data mining. At present,data mining technology has been widely used in the commercial field. The introduction of data mining technology in the automobile product sales system can provide scientific basis for the decision making of automobile sales. In this paper,some automobile brand sales data are collected in Anhui for nearly a year for integration and data preprocessing,which are then analyzed and applied using data mining improved decision tree algorithm to make a prediction of the main factors influencing the automobile sales and thus make marketing strategies to help enterprises to get better returns.
作者 童威 黄启萍
出处 《安徽电气工程职业技术学院学报》 2017年第3期104-109,共6页 Journal of Anhui Electrical Engineering Professional Technique College
关键词 数据预处理 数据挖掘 决策树 汽车销售 data preprocessing data mining decision tree automobile sales
  • 相关文献

参考文献4

二级参考文献44

  • 1杨学兵,张俊.决策树算法及其核心技术[J].计算机技术与发展,2007,17(1):43-45. 被引量:88
  • 2王阗,佘光辉.决策树C4.5算法在森林资源二类调查中的应用[J].南京林业大学学报(自然科学版),2007,31(3):115-118. 被引量:13
  • 3Williams N, Zander S, Armitage G.A preliminary performance comparison of five machine learning algorithms for practical IP traffic flow classification[J].ACM SIGCOMM Computer Communication Review,2006,36(5) : 5-16.
  • 4Andrew W,Denis Z.Intemet traffic classification using Bayesian analysis techniques[C]//ACM International Conference on Mea- surement and Modeling of Computer Systems(SIGMETRICS), Banff, Alberta, Canada, 2005.
  • 5Livadas C, Walsh R, Lapsley D.Using machine learning techniques to identify Botnet traffic.[S.l.]:IEEE,2006:967-974.
  • 6Wang Rui,Liu Yang, Yang Yuexiang, et al.Solving the app-level classification problem of P2P traffic via optimized support vector machines[C]//ISDA' 06,2006: 534-539.
  • 7张华平.计算所汉语词法分析系统ICTCLAS[EB/OL].2002-08-16.http://www.nip.org.ca/project/project.php?proj-id=6.
  • 8Haykin S.Neural networks and learning machines[M].Beijing:China Machine Press,2009:1-7.
  • 9ZHU Xiao-liang,WANG Jian,YAN Hong-can,et al.Researchand application of the improved algorithm C4.5 on decisiontree[C]//IEEE International Conference on Test andMeasurement,Hongkong,2009:184-187.
  • 10de Toledo P,Rios P M,Ledezma A,et al.Predicting the outcomeof patients with subarachnoid hemorrhage using machinelearning techniques[J].IEEE Trans on Information Technologyin Biomedicine,2009,13(5):794-801.

共引文献55

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部