期刊文献+

动态障碍物环境下移动机器人的全局路径规划研究 被引量:2

Research on Global Path Planning of Mobile Robot in Dynamic Obstacle Environment
下载PDF
导出
摘要 针对环境中存在动态障碍物时,如何运用全局路径规划算法求解移动机器人的最佳路径,设定动态障碍物的运动范围是已知的,则危险程度是一个区间数.定义一种Pareto概率支配公式,求出不同区间数之间的占优概率,由此得出哪条路径的安全程度更高.对传统NSGA-Ⅱ算法进行改进,根据约束函数把所有的解区分为可行解与非可行解,引入非可行解储备集储存好的非可行解,引导可行解进化出更好的解.建立环境模型,用Matlab软件进行仿真,仿真结果表明对不同的障碍物环境,该方法均能规划出安全无碰的路径,与传统算法进行对比,改进后算法在求解动态障碍物环境下的机器人路径规划问题更加可行有效. For the dynamic obstacles in the environment, how to use the global path planning algorithm to solve the optimal path of mobile robot, assuming that the motion range of the dynamic obstacle is known, so the hazard level is an interval number. Define a Pareto probability dominance formula, find out the dominant probability between different interval numbers,which can be used to determine which path is more secure. The traditional NSGA-II algorithm is improved,and all solutions are classified into feasible and infeasible solutions according to the constraint function,the non feasible solution set is introduced to store the non feasible solution, guide feasible solutions to evolve better solutions. The environment model is established and simulated with MATLAB software. The simulation results show that for different obstacle environ-ment, this method can be used to plan a safe path, compared with the traditional algorithm, the improved algorithm in solving the dynamic obstacle environment for robot path planning problem is more feasible and effective.
出处 《南京师大学报(自然科学版)》 CAS CSCD 北大核心 2017年第3期52-58,66,共8页 Journal of Nanjing Normal University(Natural Science Edition)
基金 国家自然科学基金(61403175 41501597)
关键词 移动机器人 路径规划 动态障碍物 NSGA-Ⅱ算法 mobile robot,path planning, dynamic obstacles,NSGA-II algorithm
  • 相关文献

参考文献6

二级参考文献41

  • 1闻朝中,李智.粒子群算法在配电网络无功补偿优化中的应用[J].武汉工业学院学报,2004,23(1):18-21. 被引量:39
  • 2张纯刚,席裕庚.Robot path planning in globally unknown environments based on rolling windows[J].Science China(Technological Sciences),2001,44(2):131-139. 被引量:12
  • 3马兆青,袁曾任.基于栅格方法的移动机器人实时导航和避障[J].机器人,1996,18(6):344-348. 被引量:91
  • 4郑向伟,刘弘.多目标进化算法研究进展[J].计算机科学,2007,34(7):187-192. 被引量:52
  • 5[1]Alexopoulos C,Griffin P M.Path planning for a mobile robot[J].IEEE Transaction on System,Man and Cybernetics,1992,22(2):318-322.
  • 6[4]Xiao J,Michalewicz Z,Zhang L,et al.Adaptive evolutionary planner/navigator for mobile robots[J].IEEE Transaction on Evolutionary Computation,1997,1(1):8-28.
  • 7[6]Zitzler E,Laumanns M,Bleuler S.A tutorial on evolutionary multiobjective optimization[J].Metaheuristics for Multiobjective Optimisation,2004,2(1):3 -37.
  • 8Deb K, Agrawal S, Pratap A, et al.A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization NSGA-II[EB/OL].http://eiteseerx.ist.psu.edu/viewdoc/summary?doi= 10.1.1.18.4257.
  • 9Deb K,Pratap A,Agarwal S,et al.A fast and elitist multiobjec- tive genetic algorithm:NSGA-II[J].IEEE Transactions on Evolu- tionary Computation, 2002,6 (2) : 182-197.
  • 10Wolpert D H,Macready W G.No free lunch theorems for opti- mization[J].IEEE Transactions on Evolutionary Computation, 1997,1 ( 1 ) : 67-82.

共引文献541

同被引文献23

引证文献2

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部