期刊文献+

具有非线性发生率的多易感群体的传染病模型研究

Study on Epidemic Models with Nonlinear Incidence Rate and Differential Susceptibility
下载PDF
导出
摘要 本文主要研究一类具有Beddington-DeAngelis发生率的多易感群体的传染病模型.首先得到基本再生数R_0,然后通过构造Lyapunov泛函和LaSalle不变原理得到了平衡点的全局渐近稳定条件. This paper investigates a class of epidemic model with Beddington-DeAngelis incidence rate and differential susceptibility. The basic reproduction number R0 is first given, after which some sufficient conditions ensuring the stability of the system are obtained by constructing Lyapunov functional and using the LaSalle invaria-ble principle.
出处 《湖南师范大学自然科学学报》 CAS 北大核心 2017年第5期71-76,共6页 Journal of Natural Science of Hunan Normal University
基金 湖南省教育厅科学基金资助项目(13K02) 湖南省创新平台与人才计划资助项目(2015JC3050)
关键词 非线性发生率 多易感种群 LYAPUNOV泛函 LaSalle不变原理 全局渐近稳定性 nonlinear incident rate differential susceptibility Lyapunov functional LaSalle invariable prin-ciple globally asymptotical stability
  • 相关文献

参考文献1

二级参考文献10

  • 1Song Jian,Yu Jingyuan.Population System Control[M].Berlin:Springer-Verlag,1987.
  • 2Thieme H R,Castillo-Chavez C.How may infection-age-dependent infectivity affect the dynamics of HIV/AIDS?[J].SIAM J Appl Math,1993,53(5):1447-1479.
  • 3Kim M Y,Milner F A.A mathematical model of epidemics with screening and variable infectivity[J].Math Comput Modelling,1995,21(7):29-42.
  • 4Kim M Y.Existence of steady state solutions to an epidemic model with screening and their asymptotic stability[J].Appl Math Comput,1996,74(1):37-58.
  • 5Kribs-Zaleta C M,Martcheva M.Vaccination strategies and backward bifurcation in an age-since-infection structured model[J].Math Biosci,2002,177/178(2):317-332.
  • 6Inaba H,Sekine H.A mathematical model for Chagas disease with infection-age-dependent infectivity[J].Math Biosci,2004,190(4):39-69.
  • 7Li Jia,Zhou Yican,Ma Zhien,et al.Epidemiological models for mutating pathogens[J].SIAM J Appl Math,2004,65(1):1-23.
  • 8Zhang Zhonghua,Peng Jigen.A SIRS epidemic model with infection-age dependence[J].J Math Anal Appl,2007,331 (2):1396-1414.
  • 9Mena-Lorca J,Hethcote H W.Dynamic models of infectious diseases as regulators of population sizes[J].J Math Biol,1992,30(7):693-716.
  • 10徐文雄,张仲华.年龄结构SIR流行病传播数学模型渐近分析[J].西安交通大学学报,2003,37(10):1086-1089. 被引量:30

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部