期刊文献+

基于BP_Adaboost神经网络的船舶桨叶故障预警模型 被引量:1

Early ship fault warning model based on BP_Adaboost neural network
下载PDF
导出
摘要 为了提高船舶桨叶故障识别率,构建了一种基于BP_Adaboost神经网络的船舶桨叶故障预警模型。该模型首先采用数字水听器采集二进制船舶桨叶静水噪声信号,并利用MATLAB编程将二进制信号转换成WAV音频信号,通过梅尔频率倒谱系数法(Mel-Frequency Cepstral Coefficient,MFCC)提取特征值,得到36维桨叶静水噪声信号,最后运用BP_Adaboost神经网络进行分类识别预警。实验结果表明,基于BP_Adaboost神经网络的船舶桨叶故障预警模型能够高效分类预警船舶桨叶故障,与BP神经网络识别率对比,分类识别预警率高达96%。 In order to improve the fault recognition rate of ship blades,a fault prediction model based on BP_Adaboost neural network is proposed in this paper. The model uses digital hydrophone acquisition to collect binary data of ship hydrostatic blade noise,and uses MATLAB to convert binary signal into WAV audio format. Then the model uses Mel-Frequency Cepstral Coefficient( MFCC) feature extraction method to extract features and gets the water noise signal in the 36 dimension,and finally uses BP_Adaboost neural network to classify and warn the fault of ship blades. The experimental result shows that the fault prediction model based on BP_Adaboost neural network can effectively classify and predict the failure of the ship blades compared with the BP neural network. The classification and recognition warning rate is as high as 96%.
出处 《微型机与应用》 2017年第18期52-54,58,共4页 Microcomputer & Its Applications
基金 国家自然科学基金(61404083)
关键词 船舶桨叶故障预警模型 数字水听器 MFCC BP_Adaboost ship blades faults warning model digital hydrophone acquisition MFCC BP_Adaboos
  • 相关文献

参考文献5

二级参考文献27

  • 1索忠伟,王建英,魏阳,吕雪.一种基于LMS改进算法的语音增强方法[J].微计算机信息,2006(04Z):237-238. 被引量:6
  • 2杨淑娥,王乐平.基于BP神经网络和面板数据的上市公司财务危机预警[J].系统工程理论与实践,2007,27(2):61-67. 被引量:60
  • 3杨叔子,史铁林,李东晓.分布式监测诊断系统的开发与设计[J].振动.测试与诊断,1997,17(1):1-6. 被引量:29
  • 4Kotnik, B., Vlaj, D., Kacic, Z, Horvat, B., Robust MFCC Feature Extraction Algorithm using Efficient Additive and Convolutional Noise Reduction Procedures, ICSLP'02 Proceedings, Denver, Colorado, USA, pp.455- 448, 2002.
  • 5Martin, R., Spectral Subtraction Based on Minimum Statistics, In Proc. 7th European Signal Processing Conference, pp. 1182- 1185, Sept. 1997.
  • 6Kotnik, B., Kacic, Z, Horvat, B. A Multiconditional Robust Front-End Feature Extraction with a Noise Reduction Procedure Based on Improved Spectral Subtraction Algorithm. Eurospeech 2001 Proceedings, pp. 197 -200, Aalborg, Denmark, 2001.
  • 7Young, S., The HTK Book , Entropic Cambridge Research Laboratory, 2005.
  • 8Valiant L G. A theory of learnable [J]. Communications of the ACM,1984,27(11):1134-1142.
  • 9Keams M J,Valiant L G. Cryptographic limitations on learning Boolean formulae and finite automata[J]. Jour- nal of the ACM(JACM),1994,41 (1):67-95.
  • 10Freund Y.Boosting a weak learning algorithm by majori- ty[J]. Information and Computation, 1995,121 (2):256- 285.

共引文献34

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部