期刊文献+

基于正交检验法的颤振分析模态跟踪技术

Mode tracking technique in flutter analysis based on the method of orthogonality check
下载PDF
导出
摘要 模态跟踪是颤振分析的关键问题之一。常见的基于模态置信度的跟踪方法在颤振点附近常会出现错误导致跟踪失败。通过探究该方法的数学机理,阐明了基于模态置信度跟踪方法存在的缺陷,进而引入左特征向量,研究了一种基于正交检验法的模态跟踪技术。采用一悬臂直翼盒模型开展仿真研究,在状态空间下进行颤振分析,基于正交检验法得到其根轨迹图,并将模态跟踪结果与MAC值法进行对比,证明了正交检验法具有更好的模态跟踪效果。 Mode tracking is one of the key problems in flutter analysis. The common method based on modal assurance criterion frequently fails near the critical point during the application. The mathematical mechanism of this method is studied in this paper, thus revealing its defects in nature. A method based on orthogonality check is discussed, which introduces the left eigenvector. The method is applied to the flutter analysis of an unswept cantilevered wing box in the state space and the root locus of the system is obtained. The numerical results are compared with those of the MAC method and validate that the orthogonality check is more effective in mode tracking.
出处 《振动与冲击》 EI CSCD 北大核心 2017年第19期84-89,134,共7页 Journal of Vibration and Shock
基金 国家自然科学基金(11572086) 江苏省研究生培养创新工程项目(KYLX15_0092)
关键词 颤振 状态空间 特征向量 模态跟踪 模态置信度 flutter state space eigenvector mode tracking MAC
  • 相关文献

参考文献3

二级参考文献24

  • 1孙少鹏,陈劲松.亚声速谐振升力面的点偶极子法[J].空气动力学学报,1993,11(1):84-90. 被引量:1
  • 2杨立法.一种颤振分析新方法[J].空气动力学学报,1994,12(2):196-199. 被引量:3
  • 3Desmarais R N,Bennett R M. An automated procedure for computing flutter eigenvalues [ J ]. Journal of Aircraft, 1974,11 (2) : 75 -80.
  • 4Van Zyl L H. Use of eigenvectors in the solution of the flutter equation [ J ]. Journal of Aircraft, 1993,30 ( 4 ) :553 - 554.
  • 5Eldred M S, Venkayya V B, Anderson W J. New mode tracking methods in aeroelastic analysis [ J ]. AIAA Journal, 1995,33 ( 7 ) : 1292 - 1299.
  • 6Chen P C. A damping perturbation method for flutter solution:the g-method [ J ]. AIAA Journal,2000,38 (9) : 1519 - 1524.
  • 7ZONA Techonology Inc. ZAERO version7.4 theoretical manual [ M ]. Scottsdale :ZONA Teehonology lnc ,2006:7-8 - 7-12.
  • 8Hassig H J. An approximate true damping solution of the flutter equation by determinant iteration[ J]. Journal of Aircraft, 1971,8 (11) :885 -889.
  • 9Rodden W P,Johnson E H. MSC/NASTRAN v68 aeroelastic analysis user's guide [ M 1. Los Angeles: MacNeal-Schwendler Corp,1994:97 - 101.
  • 10Karpel M. Sensitivity derivatives of flutter characteristics and stability margins for aeroservoelastic design [ J]. Journal of Aircraft, 1990,27 (4) : 368 - 375.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部