期刊文献+

基于波函数法的自由阻尼薄板与声学耦合响应 被引量:1

Responses of unconstrained damped vibro-acoustic systems using the wave based prediction technique
下载PDF
导出
摘要 对敷设自由阻尼薄板振动响应进行了分析,以复刚度为基础得到了在Kirchhoff理论下复合薄板振动控制方程。基于波函数法理论,推导了自由阻尼薄板振动分析模型以及包含自由阻尼结构与声腔的三维耦合模型的建模方法;以四边固支自由阻尼矩形板及耦合的结构声学系统为例,分别以波函数法与有限元法计算了其50~500 Hz频段内的结构与声学响应。结果表明:波函数法能有效的应用于添加自由阻尼的薄板振动以及结构声耦合系统响应的预测与分析;相比于有限元法,其高精度、高收敛率的特点使波函数能有效解决更高频率的声振问题。 The global governing vibration equation of unconstrained damped plate is induced with analysis of the complex stiffness and Kirchhoff theory. The methodology for predicting the vibration of unconstrained damped plate and the acoustic of coupled 3D vibro-acoustic system is derived based on wave base method. With a four edges clamped rectangular plate and box liked coupled system as numerical example, the out-plane displacement of unconstrained damped plate is presented. The response of selected reference point is calculated in the 50-500Hz by WBM and FEM respectively. The result of the two method validates that WBM is capable for predicting the vibration and acoustic response of unconstrained damped system effectively, and WBM is more efficient to deal with vibroacoustic problems comparing with FEM.
出处 《振动与冲击》 EI CSCD 北大核心 2017年第19期158-163,共6页 Journal of Vibration and Shock
基金 重庆市基础与前沿研究计划项目(CSTC2015JCYJBX0075) 中央高校基本科研业务费(106112016CDJZR335522)
关键词 自由阻尼 波函数法 弯曲振动 结构声耦合 unconstrained damping wave based method bending vibration structural-acoustic coupling
  • 相关文献

参考文献4

二级参考文献32

  • 1张建润,孙庆鸿,陈南.轿车声学建模的统计能量法[J].中国机械工程,2004,15(20):1865-1867. 被引量:2
  • 2石秀勇,李国祥,胡玉平.发动机飞轮螺栓的三维有限元计算分析[J].中国机械工程,2006,17(8):845-848. 被引量:26
  • 3彭伟才,何锃.WB法分析声腔的中频响应[J].噪声与振动控制,2006,26(6):58-61. 被引量:5
  • 4Mead D J, Yaman Y. The harmonic response of rectangular sandwich plates with multiple stiffening:a flexural wave analysis[J]. J Sound Vib,1991,145(3):409-428.
  • 5Gupta B V R, Ganesan N, Narayanan S. Finite element free vibration analysis of damped stiffened panels[J].Comput Struct,1986,24:485-489.
  • 6Mace M. Damping of beam vibrations by means of a thin constrained viscoelastic layer: evaluation of a new theory[J].J Sound Vib,1994,172(5):577-591.
  • 7Hu Y C, Huang S C. The frequency response and damping effect of three-layer thin shell with viscoelastic core[J].Comput Struct,2000,76:577-591.
  • 8Parthasarathy G, Reddy C V R. Partial coverage of rectangular plates by unconstrained layer damping treatments[J].J Sound Vib,1985,102(2):203-216.
  • 9Atalla N,Bernhard R J.Review of numerical solutions for low-frequency structural-acoustic problems[J].Applied Acoustics,1994,43:271-294.
  • 10Banerjee P K,Butterfield R.Boundary element methods in engineering science[M].New York:McGraw-Hill Book Company,1981.

共引文献15

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部