期刊文献+

托管型数据中心激励机制优化算法分析与研究 被引量:5

Analysis and research of several optimization algorithms of incentive mechanism for colocation data center
下载PDF
导出
摘要 针对紧急需求响应下托管型数据中心激励机制中胜标方决策效率低的问题,分别采用动态规划、遗传算法、粒子群优化及混合算法等方法对其激励机制的优化展开分析与研究。根据紧急需求响应的特点和算法需求建立托管型数据中心的激励机制优化模型,证明激励机制中的胜标方决策问题为一个NPC问题。从理论上分析优化算法使用的可行性及复杂度性,为算法在激励机制中的应用提供了理论基础。通过实验仿真,分别从4种算法的处理规模、性能以及时间复杂度的角度进行阐述和对比,实验结果表明,4种算法优化了胜标方选择最大化可供电力并满足管理员的最大支付,体现了优化算法解决问题的有效性及高效率性,提高了决胜标方决策的效率。 Due to the low efficiency of incentive mechanism in colocation data center while facing emergency demand response,the dynamic programming,genetic algorithm and particle swarm optimization and hybrid algorithm were exploited to address the optimization problem in incentive mechanism.With the features of emergency demand response and the demand of four algorithms,the optimization problem was elaborately formulated and it was proved that the problem belongs to an NP-complete problem.The simulation was conducted.The results demonstrate that four algorithms not only maximize the supplied electric power for tenants,but also show the effectiveness and efficiency in addressing the problem.
作者 敬超
出处 《计算机工程与设计》 北大核心 2017年第10期2745-2749,2758,共6页 Computer Engineering and Design
基金 国家自然科学基金项目(61563012 61540054) 广西自然科学基金项目(2015GXNSFBA139260) 桂林理工大学科研启动基金项目(002401003456) "嵌入式技术与智能信息处理"广西高校重点实验室主任基金项目(2016-01-05)
关键词 紧急需求响应 托管型数据中心 优化算法 动态规划 遗传算法 粒子群优化 混合算法 emergency demand response colocation data center optimization dynamic programming genetic a lg o r ithm p a r t i-cle swarm optimization hybrid algorithm
  • 相关文献

参考文献1

二级参考文献24

  • 1Yun D, Lee J. Research in green network for future Inter- net. Journal of KIISE, 2010, 28(1): 41-51.
  • 2Andrew L L, Lin M, Wierman A. Optimality, fairness, and robustness in speed sealing designs//Proceedings of the ACM International Conference on Measurement and Modeling of International Computer Systems (SIGMETRICS 2010). New York, USA, 2010:1 -12.
  • 3Rao Lei, Liu Xue, Xie Le. Minimizing electricity cost: Opti- mization of distributed Internet data centers in a multi- electricity-market environment//Proeeedings of the 29th IEEE Conference on Computer Communications (INFOCOM' 10). San Diego, USA, 2010:1-9.
  • 4Garg S, Yeob Chee Shin, Buyya Rajkumar. Environment- conscious scheduling of HPC applications on distributed Cloud-oriented data centers. Journal of Parallel and Distributed Computing, 2011, 71(6): 732-749.
  • 5Zhang Qi, Zhu Quanyan, Boutaba Raouf. Dynamic resource allocation for spot markets in cloud computing environ- ments//Proceedings of the 4th IEEE/ACM International Conference on Utility and Cloud Computing. Victoria, Australia, 2011:178-185.
  • 6Le6n Xavier, Navarro Leandro. Limits of energy saving for the allocation of data center resources to networked appliea- tions//Proeeedings of the 30th IEEE Conference on Computer Communications (INFOCOM' 11 ). Barcelona, Spain, 2011 : 216-220.
  • 7Le Kien, Zhang Jingru, Meng Jiandong. Reducing electricity cost through virtual machine placement in high performance computing clouds//Proceedings of the 2011 International Conference for High Performance Computing, Networking, Storage and Analysis. Seattle, USA, 2011:1-12.
  • 8Macias Mario, Guitart Jordi. A genetic model for pricing in cloud computing markets//Proceedings of the 2011 ACM Symposium on Applied Computing. New York, USA, 2011: 113-118.
  • 9Shang Shifeng, Wu Yongwei, Wang Bo. An intelligent capacity planning model for cloud market. Journal of Internet Services and Information Security, 2011, 71(6): 37-45.
  • 10Wang Hongyi, Jing Qingfeng. Distributed systems meet eco- nomies Pricing in the cloud//Proeeedings of the 2nd USENIX Conference on Hot Topics in Cloud Computing. Berkeley, USA, 2011:1-6.

共引文献23

同被引文献35

引证文献5

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部