期刊文献+

多尺度特征耦合双分类器的图像伪造检测算法 被引量:1

Image authenticity detection algorithm of multi-scale feature and double classifier
下载PDF
导出
摘要 为解决当前图像伪造检测技术仅局限于单一伪造形式的检测,难以适应各种复杂的组合篡改识别,使其识别精度与通用性能不佳等不足,提出多尺度特征提取耦合双分类器的图像伪造检测算法。分别利用Curve-let变换、Gabor变换、LBP(local binary pattern)与DCT(discrete cosine transform)变换采集输入图像的特征信息,融合这些提取特征,形成图像的多尺度特征;引入隐马尔科夫和支持向量机,设计双分类器的真伪决策模型,将多尺度特征视为识别依据,利用双分类器决策出真实图像和篡改图像。实验结果表明,与当前伪造检测前算法相比,所提算法具有更高的检测精度与鲁棒性,能够有效地对复制区发生旋转、模糊和噪声的复制-粘贴和拼接伪造完成精确检测。 Current image forgery detection technologies only complete the detection of a single form of forgery,and they are difficult to adapt to a variety of complex combinations of tampering identification,the recognition accuracy and the general performance are poor.To solve the problems,a method of multi-scale feature extraction and double classifier was proposed.Four kinds of feature extraction methods were used to extract the feature information of the input image,respectively.Multi-scale features of image information were formed according to the advantages of each feature extraction method.HMM and SVM were introduced,and the double classifier decision model was designed to extract the multi-scale features as the basis for judging.The double classifier was used to determine the real image and the tampered image.Experimental research shows that compared with the previous algorithms,the proposed algorithm can effectively rotate JPEG compression,blurring and noise on the replication region of the copy paste forgery and splicing detection,and it has higher detection accuracy and better robustness performances.
作者 闻凯
出处 《计算机工程与设计》 北大核心 2017年第10期2788-2793,2819,共7页 Computer Engineering and Design
基金 江苏省科技厅应用基础研究基金项目(BJ98057)
关键词 图像伪造检测 多尺度特征 双分类器 隐马尔科夫 支持向量机 mage authenticity detection multi-scale feature double classifier hidden M arko v model support vector machine
  • 相关文献

参考文献3

二级参考文献26

  • 1刘维湘,郑南宁,游屈波.非负矩阵分解及其在模式识别中的应用[J].科学通报,2006,51(3):241-250. 被引量:38
  • 2龙飞,董槐林,王备战,史亮.一种基于Gabor描述的概率子空间人脸识别方法[J].电子与信息学报,2007,29(3):626-630. 被引量:6
  • 3Ng T T,Chang S F, Sun Q.Blind detection of photomontage using higher order statistics[C]//Proceedings of IEEE Inter- national Symposium on Circuits and Systems,2004:688-691.
  • 4Fu D,Shi Y Q,Su W.Detection of image splicing based on Hilbert-Huang transform and moments of characteristic func- tions with wavelet decomposition[C]//Proceedings of the 5th International Workshop on Digital Watermarking.Berlin: Springer, 2006: 177-187.
  • 5Chen W,Shi Y Q, Su W.Image splicing detection using 2D phase congruency and statistical moments of characteristic function[C]//Proceedings of Steganography and Watermarking of Multimedia Contents IX,2007.
  • 6Chen J, Shah S,He C,et al.WLD:a robust local image de- scriptor[J].IEEE Transactions on Pattern Analysis and Ma- chine Intelligence,2010,32(9) : 1705-1720.
  • 7Lee Tai Sing.Image representation using 2D Gabor wavelets[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1996,18(10):959-971.
  • 8Liu C,Wechsler H.Independent component analysis of Gabor features for face recognition[J].IEEE Transactions on Neural Networks,2003,14(4):919-928.
  • 9Nazari S,Moin M S.Face recognition using global and local Gabor features[C]//IEEE 2013 21st Iranian Conference on Electrical Engineering,Mashhad,Iran,2013:1-4.
  • 10Chung K C,Kee S C,Kim S R.Face recognition using principal component analysis of Gabor filter responses[C]//IEEE Proceedings of the International Workshop on Recognition,Analysis,and Tracking of Faces and Gestures in Real-Time Systems,Corfu,Greece,1999:53-57.

共引文献22

同被引文献4

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部