摘要
基于细观力学的均匀化理论,对层状周期压电复合材料进行均匀化处理。推导了布洛赫波下层状周期压电复合材料的均匀化本构关系及频散关系,并通过退化验证了理论推导的正确性。以PZT-5H/BaTiO_3复合而成的层状周期复合材料为例进行数值计算,得到了动态有效模量与频率之间的关系。将经典弹性问题的均匀化理论推广到了压电耦合问题,为预测压电复合材料动态力学性能提供了方法。
Based on the theory of micromechanical homogenization,the layered periodic piezoelectric composites are homogenized. The homogenized constitutive relation of the dynamic effective properties of layered periodic piezoelectric composites and the dispersion relation under the Bloch wave are deduced, the validity of the theoretical derivation is verified by degradation. The relationship between the effective dynamic modulus and the frequency is obtained by numerical calculation of the layered cyclic composites composed of PTZ-5 H/Ba Ti O3. The theory of homogenization of classical elasticity problem is expended to the problem of piezoelectric coupling,which provides a method for predicting the dynamic mechanical properties of piezoelectric composites.
出处
《科学技术与工程》
北大核心
2017年第27期1-7,共7页
Science Technology and Engineering
关键词
周期性
压电复合材料
均匀化理论
动态有效性质
频散关系
periodic
piezoelectric composite
homogenization theory
effective dynamic properties
dispersion relation