期刊文献+

统计机器学习中参数可辨识性研究及其关键问题 被引量:3

Parameter Identifiability and Its Key Issues in Statistical Machine Learning
下载PDF
导出
摘要 参数可辨识性研究在统计机器学习中具有重要的理论意义和应用价值.参数可辨识性是关于模型参数能否被惟一确定的性质.在包含物理参数的学习模型中,可辨识性不仅是物理参数获得正确估计的前提条件,更重要的是,它反映了学习机器中由参数决定的物理特征.为扩展到未来类人智能机器研究的考察视角,我们将学习模型纳入"知识与数据共同驱动模型"的框架中讨论.在此框架下,我们提出两个关键问题.第一是参数可辨识性准则问题.该问题考察与可辨识性密切相关的各种判断准则,其中知识驱动子模型与数据驱动子模型的耦合方式为参数可辨识性问题提供了新的研究空间.第二是参数可辨识性与机器学习理论和应用相关联的研究.该研究包括可辨识性对参数估计、模型选择、学习算法、学习动态过程、奇异学习理论、贝叶斯推断等内容的深刻影响. The study of parameter identifiability has important theoretical meaning and practical value in statistical machine learning. Parameter identiflability is a property that concerns whether the model parameters can be uniquely determined. In learning models containing physical parameters, identifiability is a prerequisite for estimating those pa- rameters; more importantly, it reflects the physical characteristic determined by those parameters. In order to extend our perspective to future human-like intelligent machines, we put the learning models into the framework of "knowledge- and data-driven models". Within this framework, we propose two key issues. The first is about identifiability criteria which aim to study various criteria closely related to identifiability; the coupling manner between knowledge-driven submodel and data-driven submodel provides novel topics for identifiability study. The second focuses on identifiability relevant to theory and application in machine learning; this involves the deep influence of identifiability on parameter estimation, model selection, learning algorithms, learning dynamics, Bayesian inference.
作者 冉智勇 胡包钢 RAN Zhi-Yong HU Bao-Gang(Chongqing Key Laboratory of Computational Intelligence, College of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065 National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190)
出处 《自动化学报》 EI CSCD 北大核心 2017年第10期1677-1686,共10页 Acta Automatica Sinica
基金 国家自然科学基金(61573348 61620106003)资助~~
关键词 可辨识性 统计机器学习 参数估计 奇异学习理论 贝叶斯推断 Identifiability statistical machine learning parameter estimation, singular learning theory, Bayes inference
  • 相关文献

参考文献6

二级参考文献183

共引文献1421

同被引文献6

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部