期刊文献+

一种基于改进地貌形状上下文的形状匹配方法 被引量:1

Shape Matching Method Based on Improved Aspect Shape Context
下载PDF
导出
摘要 在基于地貌形状上下文的形状匹配方法中,计算地貌空间测地距离消耗时间较高,对应形状特征提取过程的效率较低.针对这一问题,本文提出了一种基于地貌模糊形状上下文的快速形状匹配方法.在形状特征提取过程中,通过引入最短路径算法对轮廓采样点间的测地距离进行快速计算.在此基础上结合对数极坐标模糊直方图构造地貌模糊形状上下文,其能够更好地描述轮廓点分布情况进而有效提升形状描述符的表达能力.考虑到轮廓点集顺序已知,进一步引入动态规划分析不同地貌空间下形状片段间的对应关系,以获取准确的形状匹配结果.通过对不同的数据集进行实验仿真分析,验证了本文方法能够有效地提升运算效率并取得较好形状检索精度. In shape matching method based on aspect shape context, it is time consuming to calculate the geodesic distances on the aspect spaces, and the process of shape feature extraction is inefficient. To solve this problem, this paper proposes a fast shape method based on aspect fuzzy shape context. During the process of shape feature extraction, the geodesic distances between sample points on the shape contour can be effectively obtained by using the shortest path algorithm, and log-polar fuzzy histogram is further introduced to construct aspect fuzzy shape context, and the description ability is improved with the sample point distributions represented precisely. With the orders of sample points, the dynamic programming method is employed to analyze the correspondence between shape segments in different aspect spaces, and the shape matching result can be obtained accurately. With the proposed method tested on different shape databases, the computation efficiency can be effectively improved and desirable shape retrieval results can be achieved.
作者 刘望舒 郑丹晨 韩敏 LIU Wang-Shu ZHENG Dan-Chen HAN Min(Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116023)
出处 《自动化学报》 EI CSCD 北大核心 2017年第10期1749-1758,共10页 Acta Automatica Sinica
基金 国家自然科学基金(61374154) 中央高校基本科研业务费专项资金(DUT16RC(4)18)资助~~
关键词 形状匹配 地貌空间 最短路径 模糊直方图 地貌模糊形状上下文 Shape matching, aspect space, shortest path, fuzzy histogram, aspect fuzzy shape context (AFSC)
  • 相关文献

参考文献2

二级参考文献104

  • 1陈晓飞,王润生.目标骨架的多尺度树表示[J].计算机学报,2004,27(11):1540-1545. 被引量:4
  • 2刘文予,刘俊涛.基于骨架树描述符匹配的物体相似性度量方法[J].红外与毫米波学报,2005,24(6):432-436. 被引量:6
  • 3Amores J, Sebe N, Raxieva P. Context-based object-class recognition and retrieval by generalized correlograms. IEEE Transactions on Pattern Analysis a~d _~,fachine Intelligence, 2007, 29(10): 1818-1833.
  • 4Shi Y, Thompson P M, Zubicaray G I, Rose S E, Tu Z, Dinov I, Toga A W. Direct mapping of hippocampal surfaces with intrinsic shape context. NeuroImage, 2007, 37(3): 792-807.
  • 5Bai X, Yang X, Latecki L J, LiuW, Tu Z. Learning context- sensitive shape similarity by graph transduction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(5): 861-874.
  • 6Bai X, Wang B, Wang X, Liu W, Tu Z. Co-transduction for shape retrieval. In: Proceedings of the 11th European Con- ference on Computer Vision. Heraklion, Greece: Springer, 2010. 328-341.
  • 7Mori G, Belongie S, Malik J, Efficient shape matching using shape contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 2'7(11): 1832-1837.
  • 8Ling H, Jacobs D W. Shape classification using the inner- distance. IEEE Transactions on Pattern Analysis and Ma- chine Intelligence, 2007, 29(2): 286-299.
  • 9Roman-Rangel E, Pallan C, Odobez J M, Gatic-Perez D. Analyzing ancient Maya glyph collections with contextual shape descriptors, International Journal of Computer Vi- sion, 2010, 94(1): 101-117.
  • 10Daliri M R, Torre V. Robust symbolic representation for shape recognition and retrieval. Pattern Recognition, 2008, 41(5): 1782-1798.

共引文献99

同被引文献5

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部