期刊文献+

一种基于引导滤波的多焦红外图像增强算法

A Fast Guided Filter-Based Multi Focus Infrared Image E nhancement Algorithm
下载PDF
导出
摘要 红外成像已经广泛应用到军事和空间当中,但由于其对比度较低,往往需要增加图像增强算法以改善视觉效果。在视频检测、跟踪等系统中,为了同时获得不同距离场景的图像,需要多焦图像融合技术。然而,基于红外的视觉系统中,红外图像增强和多焦融合分别实现意味着需要更高的时间和空间成本。基于此,本文提出了一种基于引导滤波的多焦红外图像增强算法。该算法首先通过引导滤波算法将图像分为细节层和背景层,接着基于细节层图像建立局部清晰度评价函数并选择出每个图像中的聚焦像素,再将聚焦像素背景层和细节层按细节增强方法重新绑定。实验结果表明,提出的算法能实现多焦红外图像的快速融合增强,具有广泛的应用前景。 Infrared imaging system has been widely used in civil and space imaging applications. However, an image enhancement algorithm is often needed to improve the visual effects because of its low contrast. In the target detection and tracking system, multifocal image fusion technology is needed to obtain the images of different distance scenes simultaneously. However, infrared image enhancement and multifocal fusion are realized respectively means higher time and memory costs. Based on the reasons mentioned above, this paper proposed a multi focus infrared image enhancement algorithm based on guided filtering. Firstly, original image was divided into detail and background layers by guided filtering. And then an image clarity evaluation function was established based on the detail layers, which used to choose the focus pixels. Finally, a new fused enhanced image was obtained by binding the focused detail layer and background layer. Experimental results showed that the proposed algorithm is able to achieve fast fusion and enhancement of multi focal infrared images, and has a wide range of applications.
作者 周永康 朱尤攀 潘雪娟 曾邦泽 李泽民 Zhou Yongkang Zhu Youpan Pan Xuejuan Zeng Bangze Li Zemin(Kunming Institute of Physics, Kunming 650223, China Science and Technology on Low-light-level Night Vision Laboratory, Xi'an 710065, China 298 Factory of China North Industries Group Corporation, Norinco Group, Kunming 650114, China)
出处 《云光技术》 2017年第2期7-14,共8页
关键词 引导滤波 多点聚焦 红外 快速图像增强 guided filtering, multi focus, infrared image, fast image enhancement
  • 相关文献

参考文献1

二级参考文献12

  • 1Genderen J L and Van. Pohl C. Image fusion: Issues, techniques and applications, Intelligent Image Fusion. Proceedings EARSeL Workshop, Strasbourg, France, 11 Sept 1994: 18-26.
  • 2Hall D L. Mathematical Techniques in Multisensor Data Fusion. Boston, Artech House, 1992: 20-59.
  • 3Burt P J and Adelson E H. The Laplacian pyramid as a compact image code [J]. IEEE Trans. on Commun, 1983, 31(4): 532-540.
  • 4Burt P T and Lolczynski R J. Enhanced image capture through fusion. IEEE Proceedings of the 4th international Conference On Computer Vision, Berlin, Germany, 1993: 173-182.
  • 5Toet A. Hierarchical image fusion. Machine Vision and Application, 1990, 3(2): 1-11.
  • 6Li H, Manjunath B S, and Mitra S K. Multisensor image fusion using the wavelet transform. Graphical Models and Image Processing, 1995, 57(3): 235-245.
  • 7David A Y. Image merging and data fusion by means of the discrete two-dimensional wavelet transform. J.Opt. Soc. Am. A, 1995, 12(9): 1834-1841.
  • 8Zhang Z and Blum R S. A categorization of multiseale decomposition-based image fusion schemes with a performance study for a digital camera application. Proc. IEEE, 1999, 87(8): 1315-1326.
  • 9Mallat S G. A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. on Pattern Analysis and Maehina Intelligence, 1989, 11(7): 674-693.
  • 10Kohonen T. Self-organized formation of topologically correct feature maps[J]. Biological Cybernetics, 1982, 43(1): 59-69.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部