期刊文献+

斜装异型陀螺系统信息融合方法研究

Research about Skew Hetero-type Gyroscope System Information Fusion Method
下载PDF
导出
摘要 陀螺系统构型对航天器的可靠性和姿态控制系统的性能有着重要的影响,越来越多航天器的陀螺系统采用斜置安装方式。同时,航天器陀螺系统常采用不同类型的陀螺组成,达到提高系统可靠性和促进新研产品应用的目的。但是,不同类型的陀螺的动态响应往往存在较大差异,动态响应的差异引起的斜置异型陀螺系统姿态角速度测量误差大。本文首先分析了动态响应不一致对姿态角速度求解精度的影响机理;然后从陀螺安装方式和动态响应补偿入手解决陀螺系统的信息融合问题。仿真结果表明,本文提出的信息融合方法能够有效解决动态响应差异对斜置异型陀螺系统姿态角速度测量的影响。 The gyroscope system configuration has important influence on the spacecraft's reliability and the attitude control system performance. More and more spacecraft gyroscope systems were installed in an inclined way. The type of gyroscopes was deferent,not only the reliability of the system can be high,but also the new productions can be used quickly. The dynamic response of different type gyroscope was not same,and the calculation result of the spacecraft angular velocity was affected by dynamic response. The theory of the difference dynamic response affects the calculation result of the spacecraft angular velocity was analyzed. Then,the information fusion problem of gyro system was solved by means of gyro installation and dynamic response compensation. The results show the precision of angular velocity was improve by the gyro with new configuration.The simulation results show that the proposed method can effectively solve the influence of the dynamic response difference on the attitude angle velocity measurement of the non skew hetero-type gyroscope system.
出处 《航天控制》 CSCD 北大核心 2017年第5期3-8,共6页 Aerospace Control
关键词 非正交安装 异型陀螺 动态响应差异 Skew gyroscope system Hetero-type gyroscope system The dynamic response difference
  • 相关文献

参考文献4

二级参考文献12

  • 1王平,孙宁,李华旺,包海超,尹增山.小卫星星载容错计算机控制系统软硬件设计[J].宇航学报,2006,27(3):412-415. 被引量:18
  • 2ValletP(法) 曹锡生 译.SPOT卫星的姿态和轨道控制分系统.控制工程,1987,(5):86-86.
  • 3[1]Savage P G.Strapdown inertial navigation integration algorithm design part 1:attitude algorithms[J].Journal of Guidance,Control,and Dy-namics,1998,21(1):19-28.
  • 4[2]Lain Q,Gonzalez M,Sanneman P.A solution to autonomous attitude controls[C].AIAA Guidance,Navigation,and Control Conference,August 2000,Denver,CO.
  • 5[3]Jenaen H-C B,Wisniewski R.Quaternion feedback control for rigid-body spacecraft[C].AIAA Guidance,Navigation,and Control Con-ference,August 2001,Montreal,Canada.
  • 6[4]Irvina R B,Ritter J W.DRIRU Ⅱ -The NASA standard high pedor-mance inertial reference unit[C].AAS79-003.
  • 7Kouba C, Busche D, Busa J. The X-38 spacecraft fault- tolerant avionics system [ R]. NASA Johnson Space Cen- ter,August 19, 2003.
  • 8George M D, Brichacek J. Radiation hardened 32-bit processor (RH32) for fault-tolerant spaceborne comput- ers[ C]. The 15^th AIAA International Communications Satellite Systems Conference, San Diego, CA, Feb. 28- Mar. 3,1994.
  • 9Berten V, Goossens J, Jeannot E. A probabilistic ap- proach for fault tolerant multiprocessor real-time schedu- ling [ C ]. The 20^th International Parallel and Distributed Processing Symposiu,Rhodes Island, Greece, April 25- 29,2006.
  • 10Qin Z X,Analysis Detection and Estimation of Soft Failures for Strap—down Inertial Navigation System,1997年,1375页

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部