期刊文献+

改进型LTP纹理颜色直方图用于非刚体跟踪

Modified LTP Texture Color Histogram for Non-rigid Tracking
下载PDF
导出
摘要 由于传统Mean-Shift算法中单一颜色特征描述目标不完整,而现有算法中多特征融合维度大,不能较好地解决非刚体目标跟踪过程中目标形状快速变化的问题。因此,提出了改进型局部三值模式(Local Ternary Patterns,LTP)纹理颜色联合直方图的跟踪算法。该算法首先提取原始LTP纹理特征的关键纹理模式,再采用或运算的方法进行二次合并以降低特征融合的维度,在合并纹理模式形成的掩摸下,将纹理与颜色特征联合并有效地引入到Mean-Shift算法框架,实现目标的准确跟踪。实验结果表明,所提算法能够实现背景干扰、快速运动等复杂场景下的非刚体运动跟踪。与其他算法相比,跟踪误差更小,鲁棒性更强。 For the incomplete target description by the single-color features in traditional Mean-Shift algorithm and the large dimension of multi-feature fusion in the existing algorithms,the rapid change of target shape in non-rigid target tracking process could be fairly solved.Therefore,the tracking algorithm of modified LTP(Local Ternary Pattern) texture and color histogram is proposed.The key texture pattern of the original LTP texture features is firstly extracted in the algorithm,and then the secondary merging method is used to reduce the multi-feature fusion dimensions by using the OR operation.The texture and color feature are combined under the masking of combined texture pattern and effectively introduced into the Mean-Shift algorithm framework,thus to realize the accurate tracking of the target.The experimental results indicate that the proposed algorithm can realize the non-rigid motion tracking in complex scenes such as background interference and fast motion.Compared with other algorithms,this algorithm is smaller in tracking error and stronger in robustness.
出处 《通信技术》 2017年第10期2229-2235,共7页 Communications Technology
基金 国家自然科学基金(No.61361012) 国家科技支撑计划项目(No.2015BAK28B02) 贵州省科技重大专项(黔科合重字[2016]3022号)~~
关键词 非刚体跟踪 MEAN-SHIFT 局部三值模式 联合直方图 non-rigid tracking Mean-Shift local ternary patterns joint histogram
  • 相关文献

参考文献5

二级参考文献53

  • 1李培华.一种改进的Mean Shift跟踪算法[J].自动化学报,2007,33(4):347-354. 被引量:53
  • 2COMANICIU D, RAMESH V, MEER P. Kernel-based object tracking [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25:564-577.
  • 3HAGER G D, BELHUMEUR P N. Efficient region tracking with parametric models of geometry and illumination[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(10):1025-1039.
  • 4FREEDMAN D,TUREK M. Illumination-invariant tracking via graph cuts [C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Sna Diego: IEEE Press, 2005:10-17.
  • 5YANG C J, DURAISWAMI R, DAVISL S. Efficient meanshift tracking via a new similarity measure [C]. Proceedings of IEEE Conference on Computer Vision and "Pattern Recognition. San Diego, USA: IEEE, 2005:176-183.
  • 6RUBNER Y, TOMASI C, GUIBAS L J. The earth mover's distance as a metric for image retrieval [J]. International Journal of Computer Vision, 2000, 40(2):99-121.
  • 7GRAUMAN K, DARRELL T. The pyramid match kernel: discriminative classification with sets of image features [C]. IEEE International Conference on Computer Vision. Beijing: IEEE Press, 2005: 1458-1465.
  • 8LI L Y, HUANG W M, GU I Y H, et al. Statistical modeling of complex backgrounds forforeground object detection[J]. IEEE Transactions on Image Processing, 2004, 13(11) : 1459-1472.
  • 9DRUMMOND T,CIPOLLA R.Real-time visual track-ing of complex structures[J].IEEE Transactions onPattern Analysis and Machine Intelligence,2002,4(7):932-946.
  • 10COMANICIU D,RAMESH V,MEER P.Kernel-basedobject tracking[J].IEEE Transactions on Pattern Analy-sis and Machine Intelligence,2003,25(5):564-577.

共引文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部