摘要
提出一种基于知识库的三维颅骨特征点标定方法。首先,对于待标定颅骨,在知识库中找到与其形态最为相似的模板颅骨。然后,在法兰克福坐标系下,将模板颅骨上的标准特征点映射到待标定颅骨上。最后,利用K-D树对最终特征点的位置优化、精确。实验证明,当k值在颅骨模型顶点个数的1.5%~2.1%时,标定效果较好。
A 3D skull feature point calibration method based on knowledge base is proposed in this paper.Firstly,for a calibrated skull,the most similar template skull is retrieved in the knowledge database. Then,the standard feature points on the template skull are mapped to the specific position of the skull to be measured under the Frankfurt coordinate system. Finally,K-D tree is used to modify and optimize the location of standard points. The experimental results that when k value accounts for 1. 5% ~ 2. 1% of vertex number of skull model,the characteristic point calibration effect is better.
作者
来昊
周明全
刘晓宁
李康
耿国华
LAI Hao ZHOU Mingquan LIU Xiaoning LI Kang GENG Guohua(School of Information Science and Technology, Northwest University, Xi'an 710127, China School of Information Science and Technology, Beijing Normal University, Beijing 100875, China)
出处
《西北大学学报(自然科学版)》
CAS
CSCD
北大核心
2017年第5期674-680,共7页
Journal of Northwest University(Natural Science Edition)
基金
国家自然科学基金资助项目(61373117
61673319
61602380
61305032)
陕西省科技计划国际合作基金资助项目(2013KW04-04)
关键词
特征点标定
法兰克福坐标系
知识库
K-D树
颅骨相似性
feature point calibration
Frankfurt coordinate system
knowledge database
K-D tree
skull similarity