期刊文献+

基于PCA-GA-RSPSVM的复合材料损伤检测技术研究 被引量:9

Research on damage detection technique of composite material based on PCA-GA-RSPSVM
下载PDF
导出
摘要 针对复合材料损伤检测数据少、效率低等问题,提出一种基于主元分析(PCA)和改进的轮换对称分块支持向量机(RSPSVM)的损伤识别算法,并用其进行飞机复合材料构件损伤检测。首先,算法对平面多电极电容传感器检测模型等面积剖分,获取足够多复合材料检测样本;然后引入遗传算法(GA)改进RSPSVM获得更好的分类性能,并且结合PCA提取主特征向量用于降低特征向量维度和缩短训练时间,将新的特征集送入改进的RSPSVM算法,实现PCA-GA-RSPSVM识别算法;最后,用3种复合材料样板的实测值对算法进一步验证。经过仿真数据与实测数据的验证,有效的验证了PCA-GA-RSPSVM算法应用于飞机复合材料构件损伤检测的有效性。 Aiming at solving lacking of failure data and low efficiency of composite material damage detection,a fault diagnosis method based on principal component analysis( PCA) and support vector machine combined with the rotation symmetric partition( RSPSVM) was proposed. Firstly,the model of uniplanar multi-electrode is partitioned into equal area units with rotation symmetry partition,and fault data is acquired adequately. Secondly,genetic algorithm( GA) was introduced into RSPSVM in order to promote the classification performance,and PCA was used to reduce the dimension of feature vector and shorten training time,the final features were put into improved RSPSVM so that PCA-GA-RSPSVM was achieved. Finally,the measured data of three composite material samples were sent to PCA-GA-RSPSVM for verification. After verification of the simulation data and the measured data,the effective certificate of general PCA-GA-RSPSVM algorithm is applied to the diagnosis of damage of aircraft composite material.
作者 张宝印 董恩生 Zhang Baoyin Dong Ensheng(Air Force Aviation University, Changchun 130022, China)
机构地区 空军航空大学
出处 《电子测量与仪器学报》 CSCD 北大核心 2017年第9期1402-1407,共6页 Journal of Electronic Measurement and Instrumentation
基金 装备维修科学与改革项目(2011325)资助
关键词 支持向量机 主元分析 同面电容传感器 损伤检测 复合材料 support vector machine ( SVM ) principal component analysis ( PCA ) uniplanar capacitance sensor anomaly detection composite material
  • 相关文献

参考文献7

二级参考文献63

  • 1张界杰,王俊,刘伟庆,王璐,张志豪.折线型截面复合材料层合梁弯曲性能预测与分析[J].材料科学与工程学报,2014,32(3):456-460. 被引量:4
  • 2王化祥,朱学明,张立峰.用于电容层析成像技术的共轭梯度算法[J].天津大学学报(自然科学与工程技术版),2005,38(1):1-4. 被引量:38
  • 3王强,沈永平,陈英武.支持向量机规则提取[J].国防科技大学学报,2006,28(2):106-110. 被引量:5
  • 4杜善义.先进复合材料与航空航天[J].复合材料学报,2007,24(1):1-12. 被引量:1004
  • 5Neumayer M,Zang H,Watzenig D.Current reconstruction algo- rithms in electrical capacitance tomography[J].Lecture Notes in Electrical Engineering, 2011,83 : 65-106.
  • 6Fang W, Cumberbatch E.Matrix properties of data from electrical capacitance tomography[J].Journal of Engineering Mathematics, 2005,51 (2) : 127-146.
  • 7Tuia D,Mufioz-Mari J, Kanevski M.Structured output SVM for remote sensing image classification[J].Journal of Signal Processine Systems. 2010.35 : 213-235.
  • 8Li Y, Qian Y.Intrusion detection based on support vector ma- chine divided up by clusters[C]//Proceedings of the Interna- tional Conference on Computational Intelligence and Indus- trial Application, 2010,3 : 284-286.
  • 9Lei J, Liu S.An image reconstruction algorithm based on the regularized minimax estimation for electrical capacitance tomography[J].Journal of Mathematical Imaging and Vision, 2011,39(3) :269-291.
  • 10Walavalkar L.Support vector learning for gender classification using audio and visual cues[J].International Journal of Pattern Recognition and Artificial Intelligence, 2003,17 ( 3 ) : 417-439.

共引文献68

同被引文献95

引证文献9

二级引证文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部