摘要
针对图像单一特征分割结果的适应局限性,提出融合多特征和谱聚类集成的图像分割方法(MFSC-IS).首先对图像进行基于粒计算的多特征子分割;然后将分割结果映射到超图,利用谱聚类集成算法得到最终分割结果.实验结果表明,与Gpb(Globalized probability of boundary)算法相比,融合多特征和谱聚类集成方法可以得到一个相对较好的分割结果.
In order to overcome the limitation of single image feature segmentation,an image segmentation method based on the fusion of multiple features and spectral clustering was proposed.Firstly,the image was segmented by multi-feature based on the granular computing,and then the result was mapped to the hypergraph.Finally,the final segmentation result was obtained by using the spectral clustering algorithm.The experiment results indicated that the proposed method can obtain a relative better segmentation results compared with the Gpb(Globalized probability of boundary)algorithm.
出处
《信阳师范学院学报(自然科学版)》
CAS
北大核心
2017年第4期638-641,共4页
Journal of Xinyang Normal University(Natural Science Edition)
基金
国家自然科学基金项目(61402393
61501393)
河南省高等学校重点科研项目(17B520034)
河南省教育厅教改研究项目(2017-JSJYYB-055)
关键词
图像分割
特征选择
多特征融合
谱聚类集成
color image segmentation
feature selection
multiple features fusion
spectral cluster ensemble