摘要
定义图G中所有点对间的距离的平方和为S(G)=∑uv∈VGd2G(u,v)=1/2∑v∈VGLG(v),其中dG(u,v)为图G中任意顶点u,v之间的距离,LG(v)表示图G中点v到其它点的距离的平方和。在所有直径为d的n顶点树中分别确定使S(G)最小和第二小的树。
Denote the sum of the squares of all distances between all pairs of vertices in G by S(G)=∑uv∈VGdG^2(u,v)=1/2∑v∈VGLG(v)where dG(u,v) is the distance between u and v in G and the sum goes over all the pairs of vertices, LG(v) denotes the sum of the squares of all distances from u in G. The trees with minimum and second-minimum S(G) among all the trees with n vertices and diameter d are obtained respectively.
作者
赵红锦
耿显亚
ZHAO Hong-jin GENG Xian-ya(School of Mathematics and Big Data, Anhui University of Science and Technology, Huainan Anhui 232001, China)
出处
《阜阳师范学院学报(自然科学版)》
2017年第3期5-9,共5页
Journal of Fuyang Normal University(Natural Science)
基金
国家自然科学基金(11401008
61672001)
中国博士后科学基金(2016M592030)资助
关键词
树
悬挂点
直径
tree
pendant vertex
diameter