期刊文献+

薄膜式气动微阀的流动特性研究 被引量:2

A Study on Flow Characteristics of Pneumatic Microvalves in Membrane Form
原文传递
导出
摘要 通过分析薄膜式气动微阀的内部流动特性,研究控制通道的驱动方式以及阀膜片结构对微阀耐压性和有效性的影响.建立不同微流道内控制方程和阀膜片的受力方程;计算压力驱动和速度驱动下微阀内部的流场特性,分析平展膜和波形膜的变形规律.搭建实验测试系统,测试不同入口速度下微阀的关闭性能.研究表明:压力驱动较速度驱动具有更好的控制性能,但容易造成阀膜片变形失效.波形膜较平展膜具有更好耐压性,并且可以增强控制的灵敏度和有效性. This paper explores thedriving modes of the control channels and the effects of the diaphragm struc- tures on the pressure resistance and effectiveness of the microvalves by analyzing the internal flow characteristics of the membrane pneumatic microvalves. The governing equations of different micro fluidic channels and the stress equations of the diaphragms are established. The flow field characteristics of the microvalves are calculated and the deformation rules of the fiat films and the corrugated films are analyzed. An experimental test system to test the closing performance of microvalves at different inlet speeds is set up. The results show that pressure - driven model is better than velocity - driven model in terms of control performance, but it is easy to cause de- formation of the diaphragms. The corrugated films have better pressure resistance than the flat films and can en- hance the sensitivity and effectiveness of control.
作者 龙威 杨绍华 巨少华 田时泓 LONG Wei YANG Shaohua JU Shaohua TIAN Shihong(Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500, Chin)
出处 《昆明理工大学学报(自然科学版)》 CAS 2017年第5期39-45,共7页 Journal of Kunming University of Science and Technology(Natural Science)
基金 国家自然科学基金-云南联合基金项目(U1302271) 国家自然科学基金项目(51766006)
关键词 气动微阀 压力驱动流 波形膜 流动特性 pneumatic microvalve, pressure -driven flow, waveform membrane, flow property
  • 相关文献

参考文献2

二级参考文献19

  • 1Bird G A. Molecular gas dynamics and the direct simulation of gas flows [M]. Oxford: Clarendon Press,1994. 92-93,105,208-216,219,425.
  • 2Moss J N, Mitcheltree R A, Dogra V K, et al. Direct simulation Monte Carlo and Navier-Stokes simulations of blunt body wake flow[J]. AIAA, 1994, 32(7):1 399-1 406.
  • 3Ivanov M, Markelov G N, Gimelshein S F, et al. Capsule aerodynamics with real gas effects from free molecular to near-continuum regions[R]. AIAA Paper,97-0476. New York: AIAA, 1997.
  • 4Rault A G, Woronowicz M S. Application of direct simulation Monte Carlo satellite contamination studies[J].J Spacecr Rockets, 1995, 32(3) :392-397.
  • 5Sun H, Faghri M. Effects of rarefaction and compressibility of gaseous flow in mierochannel using DSMC[J]. Numer Heat Transfer, Part A, 2000, 38(2):153-168.
  • 6Muntz E P. Rarefied gas dynamics[J]. Annu Rev Fluid Mech, 1989(21) :387-417.
  • 7Oran E S, Oh C K, Cybyk B Z. Direct simulation Monte Carlo: recent advances and applications[J]. Annu Rev Fluid Mech, 1998(30):403-441.
  • 8Liou W W, Fang Y C. Heat transfer in microchannel devices using DSMC[J]. J Microelectromech Syst,2001, 10(2) :274-279.
  • 9Nance R P, Hash D B, Hassan H A. Role of boundary conditions in Monte Carlo simulation of MEMS Devices[J]. J Thermophys Heat Transfer, 1998, 12(3) :447-449.
  • 10Karniadakis G E, Beskok A. Micro flows fundamentals and simulation[M]. New York: Springer, 2002.31,63-66.

共引文献13

同被引文献21

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部