摘要
建立了温度场的动态Bayes误差函数,并将动态Bayes参数识别理论引入工程结构温度场参数随机识别问题,推导了相应参数的动态Bayes均值和方差表达式,结合共轭梯度法推导了相应的优化识别计算公式,同时给出了温度场参数动态Bayes识别的计算步骤,通过实例分析得出了若干温度场参数的动态Bayes识别的重要结论。
Dynamic Bayesian error function of temperature field is founded on the first time in this paper. Dynamic Bayesian estimation theory is applied for the stochastic estimation problem of concrete temperature field parameters. The corresponding formulas of dynamic Bayesian expectation and variance are deduced. The optimization estimation computing formulas are also deduced by adapting gradient method and the computing steps of dynamic Bayesian estimation are given in detail. Though a practical example, some important conclusions about dynamic Bayesian estimation of temperature field parameters are drawn.
作者
俞博
江祥林
张剑
汪锋
YU Bo JIANG Xianglin ZHANG Jian WANG Feng(Jiangxi Transportation Institute, Nanchang 330200, China Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China Jiangsu Yangtze River Bridge Co. , Ltd. , Nanjing 214521, China)
出处
《新技术新工艺》
2017年第10期15-19,共5页
New Technology & New Process
基金
国家自然科学基金资助项目(11232007)
关键词
温度场参数
动态Bayes识别
误差函数
共轭梯度法
temperature field parameters, dynamic Bayesian estimation, error function, gradient method