期刊文献+

基于时差系数的城市原水需水量预测应用 被引量:5

Research and Application of Urban Water Demand Forecasting Based on Time Difference Coefficient
下载PDF
导出
摘要 以上海市青草沙原水智能调度管理系统为背景,采用基于改进粒子群的最小二乘支持向量机为原水需水量预测的方法,得到了较为准确的预测效果.通过对需水量数据进行特征分析,发现在节假日需水量预测与实际供水量有较大误差.建立基于时差系数的小时级与天级原水需水量预测模型,用以改善和优化原天级预测模型.最后,结合水厂的实际运行情况,将优化改善后的预测模型应用于水厂,为其提供更为精确的需水量预测并取得较好结果. The support of water supply system has been a concerned focus of urban construction. The accurate prediction of short term water quantity is important for the whole water system operation and maintenance. In this paper, the intelligent scheduling management system for raw water based on least square support vector machine with improved particle swarm optimization is proposed by means of the project Shanghai Qingcaosha Intelligent Raw Water Dispatch and Management System. After analyzing the characteristics of water quantity data, the results of water quantity prediction have a big deviation from the actual water supply during the holidays. So forecasting model of daily and hourly water demand is built based on time difference coefficient to optimize the original prediction model. Combined with the actual operation and process conditions of water plant, this optimized model is applied to water plant to provide more accurate water supply scheduling suggestion.
作者 罗华毅 王景成 杨丽雯 李肖城 LUO Huayi WANG J ingcheng YANG Liwen LI Xiaocheng(School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, Chin)
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2017年第10期1260-1267,共8页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金项目(61533013 61433002 61233004) 国家重点基础研究发展规划(973)项目(2013CB035406)资助
关键词 需水量预测 时差系数 粒子群算法 最小二乘支持向量机 water demand forecasting time difference coefficient particle swarm optimization algorithm least square support vector machine
  • 相关文献

参考文献6

二级参考文献23

  • 1周刚,王弘宇,胡春雪,程晓如,蔡蔚蔚.应用灰色新陈代谢GM(1,1)模型预测中长期城市需水量[J].中国农村水利水电,2005(8):16-18. 被引量:31
  • 2杨道辉,马光文,刘起方,陶春华,过夏明.基于粒子群优化算法的BP网络模型在径流预测中的应用[J].水力发电学报,2006,25(2):65-68. 被引量:43
  • 3翟军,盛建明,冯英浚.MGM(1,n)灰色模型及应用[J].系统工程理论与实践,1997,17(5):109-113. 被引量:123
  • 4杨位钦,时间序列分析与动态数据建模,1988年
  • 5严煦世,给水管网理论和计算,1986年
  • 6王勇领,预测计算方法,1986年
  • 7Eberhart R C,Shi Yuhui.Comparison between genetic algorithms and particle swarm optimization[C]// Evolutionary Programming Vii:Proc 7th Ann Conf on Evolutionary Conf.Berlin,San Diego:Springer-Verlag,1998.
  • 8Eberhart R C,Shi Yuhui.Particle swarm optimization:developments,applications and resources[C]//Proc Congress on Evolutionary Computation 2001 IEEE Service Center.Piscataway,NJ,Seoul,Korea,2001.
  • 9Lu W Z,Fan H Y,Leung A Y T,et al.Analysis of pollutant levels in central Hong Kong applying neural network method with particle swarm optimization[J].Environmental Monitoring and Assessment,2002,79:217-230.
  • 10Shi Yuhui,Eberhart R C.A modified particle swarm optimizer[C]// Proceedings of the IEEE International Conference on Evolutionary Computation.Anchorage,AK,USA,1998:69 -73.

共引文献58

同被引文献58

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部