摘要
遗传算法是求解多约束、多目标组合优化问题的有效算法。经典遗传算法具有早熟特性,可以直接导致算法陷入局部最优解。为了提高算法的全局搜索性能,以遗传算法的染色体编码设计和选择算子设计两个方面为切人点,提出基于空间编码与正弦选择算子遗传算法(SCSS)。仿真实验证明,SCSS遗传算法求解开放教育排课问题能够满足多重约束条件,为有效实现排课问题的智能求解提供实用性的数学方法。改进后的遗传算法能够快速收敛得到问题的全局最优解,算法全局搜索性能明显增强。
Genetic algorithm(GA)is an effective algorithm to solve multi-constrained and multi-objective combinatorial optimization problems. The classical genetic algorithm has the characteristics of premature convergence,which can lead to the local optimal solution. In order to improve the algorithm global searching performance,the paper proposed the genetic algorithm based on space coding and sine selection operator,or SCSS,taking the two aspects of chromosome coding design and selection operator design for the genetic algorithm as the cut-in point. The simulation results show that the SCSS genetic algorithm can solve the Open Education timetabling problem with multiple constraints,and provides a practical mathematical method to solve the problem of scheduling problem effectively. The improved genetic algorithm can quickly converge to the global optimal solution of the problem,and the global search performance of the algorithm is obviously enhanced.
出处
《计算机与数字工程》
2017年第10期1924-1930,共7页
Computer & Digital Engineering
基金
2015年度广东省教育信息技术研究"粤教云"计划专项重点课题<基于兴趣簇的云流媒体系统模型的研究>(编号:2015YJYZ016)
2014年度广东远程开放教育科研基金项目<大数据视角下电大开放教育数据挖掘与分析对教与学的促进研究>(编号:YJ1418)资助
关键词
遗传算法
多约束
空间编码
正弦选择算子
开放教育
全局最优解
genetic algorithm
multi-constrained
space coding
sine selection operator
the Open Education
the global optimal solution