期刊文献+

风洞虚拟飞行试验中的飞行控制系统快速原型设计与部署技术 被引量:4

Rapid prototyping and implementation of flight control system for wind tunnel virtual flight test
下载PDF
导出
摘要 利用风洞虚拟飞行技术可在风洞中开展飞行器的飞行控制验证与评估研究。飞行控制子系统是虚拟飞行试验技术的核心,采用控制系统快速原型技术,可实现嵌入式实时飞行控制代码自动生成和快速部署,从而大幅降低飞行控制系统集成难度,有效提高风洞虚拟飞行试验效率。本文概述了Φ3.2m风洞虚拟飞行试验系统组成和现状,详细介绍了基于该系统的飞行控制系统快速原型开发平台和部署方法,通过某飞机缩比模型全数字仿真、半实物仿真和风洞虚拟飞行试验,验证了该技术具有良好的通用性和开放性等特点,可以满足不同型号飞行器风洞虚拟飞行试验飞行控制系统集成需求。 Wind tunnel virtualflig h t technique (V F T ) can be used to ve rify and evaluate the flight control system of an a irc raf t. The f l ig h t control subsystem, core of V F T , employs rapid control system prototyping to achieve auto generation and rapid implementation of embedded real-time flight control codes, reduce the d if f ic u lty of f l ig h t control system integ ra t ion,and enhance wind tunnel vir tual f l ight test efficiency. This paper summarizes the systeof arts of 4^3. 2m wind tunnel v ir tu a l f l ig h t system, introduces the rapid prototyping development platform and implementation methods of the f l ig h t control system based on that system.Commonality and openness of the system was verified through fu l l digital sim u lat io n, semi-physical simulation and wind tunnel v ir tu a l f l ig h t tests on a scale aircraft model. This techniquecan fulfill the requirements of control system integration fo r various aircraft wind tunnel virtua lflight tests.
出处 《空气动力学学报》 CSCD 北大核心 2017年第5期700-707,共8页 Acta Aerodynamica Sinica
关键词 虚拟飞行 飞行控制系统 快速控制原型 全数字仿真 半实物仿真 风洞试验 virtual f l ight f l ig ht control system rapid control p ro to ty p in g digital simula-tion semi-physical simulat ion wind tunnel test
  • 相关文献

参考文献4

二级参考文献100

  • 1曾建超,俞志和.虚拟样机技术及其在ADMAS上的实践[M].西安:西北工业大学出版社,1999.
  • 2ALCORN C W, CROOM M A, FRANCIS M S, et al. The X-31 air- craft: advances in aircraft agility and performance [J]. Progress inAerospace Sciences, 1996, 32(4): 377 - 413.
  • 3R·C·比施根斯(俄).超声速飞机空气动力学和飞行力学[M].上海:上海交通大学出版社,2009.
  • 4SHIN Y, ANTHONY J C, MATTHEW J. Adaptive control of ad- vanced fighter aircraft in nonlinear flight regimes [J]. Journal of Guid- ance, Control, and Dynamics, 2008, 31(5): 1464- 1477.
  • 5WILSON E A, DAN A, PINHAS Z. Geometric evaluation of axisym- metric thrust-vectoring nozzles for aerodynamic performance predic- tions [J]. Journal of Propulsion and Power, 2002, 18(3): 712 - 716.
  • 6BARHAM R W. Thrust vector aided maneuvering of the YF-22 ad- vanced tactical fighter prototype [C]//Agard Conference Proceedings Agard CP. Paimdale: NASA, 1994:1 - 13.
  • 7GOMAN M, KHRABROV A. State-space representation of aerody- namic characteristics of an aircraft at high angles of attack [J]. Jour- nal of Aircrafi, 1994, 31(5): 1109 - 1115.
  • 8PANCHAL B, JAYWANT P K, TALOLE S E. Robust predictive con- trol of a class of nonlinear systems [J]. Journal of Guidance, Control, and Dynamics, 2014, 37(5): 1437- 1445.
  • 9SIEBERLING S, CHU Q P, MULDER J A. Robust flight control us- ing incremental nonlinear dynamic inversion and angular acceleration prediction [J]. Journal of Guidance, Control, and Dynamics, 2010, 33(6): 1732- 1742.
  • 10ISHIHARA A, BEN M S, NGUYEN N, et al. Time delay margin estimation for adaptive outer-loop longitudinal aircraft control [C] //AIAA Information Technology @ Aerospace Conference. Atlanta: AIAA, 2010.

共引文献48

同被引文献22

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部