期刊文献+

基于小波变换的森林火灾烟雾检测算法的设计 被引量:2

Design of the method algorithm forest fire smoke detection based on wavelet transform
下载PDF
导出
摘要 传统的森林火灾检测技术由于效率低、价格昂贵等缺点,并不适用于森林火灾探测。文中提出并设计与实现了一种基于小波变换的森林视频火灾烟雾检测方法,使用帧间差分法和质心算法提取疑似烟雾运动目标区域,然后对提取的运动目标的前景区域和背景区域进行小波能量特征提取与分析。采用国外研究机构所提供的森林火灾烟雾视频图像,对文中算法进行验证,实验结果表明,该算法能够准确地跟踪和提取疑似烟雾运动目标区域,当森林背景区域和前景区域的高频能量比值的均值大于1.2时,在3~4秒内能够检测出森林火灾烟雾,并且该算法对常见的森林树叶运动目标具有抗干扰能力。该研究工作可实现森林火灾早期预警,对森林火灾及早准确探测具有重要意义。 The traditional forest fire detection technologies don't apply to forest fire detection due to its shortcomings such as low efficiency,expensiveness. This paper proposes,designs and implements a method for forest fire smoke detection based on discrete wavelet transform. The suspicious moving object area is extracted by using frame difference method and centroid algorithm. Then the feature of wavelet high frequency energy for the foreground and background region of moving object is extracted and analyzed.In order to validate the algorithm,the paper uses the forest fire smoke video images from video database provided by the foreign research institute. The experimental results show that the algorithm can detect the forest fire smoke in 3 - 4 seconds,when the mean value of high frequency energy ratio for the forest background and foreground region is greater than 1. 2. In addition,the algorithm has certain antiinterference ability for the common moving object of forest leaves. The research work can help realize the early warning of the forest fire,and has great significance for the accurate detection of the early forest fire.
出处 《信息技术》 2017年第10期10-13,共4页 Information Technology
基金 国家自然科学基金(U1331109)
关键词 离散小波变换 森林火灾 烟雾检测 帧间差分法 视频图像 discrete wavelet transform forest fire smoke detection frame difference method video image
  • 相关文献

参考文献6

二级参考文献82

  • 1刘龙,刘贵忠,刘洁瑜,王占辉.一种基于MPEG压缩域的运动对象分割算法[J].西安交通大学学报,2004,38(12):1264-1267. 被引量:5
  • 2邱丹丹,马洪超,杨耘,贾鹏.基于多源卫星图像融合的水坝检测方法的研究[J].遥感学报,2006,10(4):449-455. 被引量:3
  • 3张泽旭,崔平远,崔祜涛.一种基于方向平滑约束优化的多尺度光流算法[J].高技术通讯,2007,17(2):153-158. 被引量:2
  • 4Weng Muyun, He Mingyi, Zhang Yifan. An Adaptive Implementation of the Kernel- Based Object Tracking Method [ C ]//Proceedings of the First International Conference on Innovative Computing, Information and Control Washington DC:IEEE Computer Society, 2006 : 354 - 357.
  • 5Karthik Hariharakrishnan, Dan Schonfeld. Fast Object Tracking Using Adaptive Block Matching [ J]. IEEE Transactions on Multimedia,2005,7 (5) :853 - 859.
  • 6Weng Muyun, He Mingyi. Image Detection Based on SUSAN Method and Integrated Feature Matching [ J]. International Journal of Innovative Computing, Information and Control,2008,4 ( 3 ) :671 - 680.
  • 7Weng Muyun, He Mingyi. Image Feature Detection and Matching Based on SUSAN Method [ C ]//Proceedings of the First International Conference on Innovative Computing, Information and Control. Washington DC:IEEE Computer Society, 2006:322 - 325.
  • 8Kalata P R. The Tracking Index: A Generalized Parameter for Target Trackers [ J ]. IEEE Transactions on Aerospace and Electronic Systems, 1984,20 (2) :174 - 182.
  • 9Moravec H.Visual mapping by a robot rover[C]//Proceedings of the International Joint Conference on Artificial Intelligence.1979:598-600.
  • 10Harris C,Stephens M.A combined corner and edge detector[C]//The 4th Alvey Vision Conference.1988:147-151.

共引文献60

同被引文献54

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部