期刊文献+

基于能耗降低的虚拟机动态迁移算法 被引量:3

Live Migration Algorithm of Virtual Machine for Reduce Energy Consumption
下载PDF
导出
摘要 在云计算环境中,有效的虚拟机动态迁移算法有助于降低能耗和SLA违反率。本文提出了一种改进的虚拟机动态迁移算法,通过双阈值策略、基于最小迁移代价的虚拟机选择策略和目标物理节点的概率选择策略来降低能耗,并降低SLA违反率。仿真实验表明,该方法在虚拟机动态迁移中能够降低系统的能源消耗,同时也降低了SLA违反率。 In cloud computing environment , a n effective live migration algorithm of virtual machine can greatly reduce energy consumption and the violation rate of SLA . This work proposes an improved virtual machine live migration algorithm ’ which adopts the double thresholds strategy ’ the virtual machineselection strategy based on the minimum cost of migration , and the probabilistic selection target physical nodes. The simulation experiments show that the proposed algorithm can reduce the system energy consumption and the SLA violation rate in the virtual machine live migration.
出处 《华东理工大学学报(自然科学版)》 CSCD 北大核心 2017年第5期692-697,共6页 Journal of East China University of Science and Technology
关键词 云计算 虚拟机 动态迁移算法 能耗 SLA违反率 cloud computing virtual machine live migration algorithm energy consumption violation rate of SLA
  • 相关文献

参考文献3

二级参考文献38

  • 1Noury N,Hervé T,Rialle V,et al.Monitoring behavior in home using a smart fall sensor and position sensors[A].2000 1st Annual International,Conference On Microtechnologies in Medicine and Biology[C].Piscataway,NJ:IEEE,2000.607-610.
  • 2Agrawal S,Deb S,Naidu K V M,et al.Efficient detection of distributed constraint violations[A].2007 23rd IEEE Intemational Conference on Data Engineering[C].Piscataway,NJ:IEEE,2007.1320-1324.
  • 3Sharfman I,Schuster A,Keren D.A geometric approach to monitoring threshold functions over distributed data streams[J].ACM Transactions on Database Systems,2007,32(4):23.
  • 4Kashyap S,Ramamirtham J,Rastogi R,et al.Efficient constraint monitoring using adaptive thresholds[A].2008 24th International Conference on Data Engineering[C].Piscataway,NJ:IEEE,2008.526-535.
  • 5Dilman M,Raz D.Efficient reactive monitoring[J].IEEE Journal on Selected Areas in Communications,2002,20(4):668-676.
  • 6Cormode G,Muthukrishnan S,Yi K.Algorithms for distributed functional monitoring[J].ACM Transactions on Algorithms,2011,7(2):21-40.
  • 7Cheng R,Kalashnikov D V,Prabhakar S.Evaluating probabilistic queries over imprecise data[A].Proceedings of the 2003 ACM SIGMOD International Conference on Management of data[C].New York:ACM,2003.551-562.
  • 8Deshpande A,Guestrin C,Madden S R,et al.Model-driven data acquisition in sensor networks[A].Proceedings of the 30th International Conference on Very Large Data bases[C].San Francisco:Morgan Kaufmann,2004.588-599.
  • 9Gruenwald L,Chok H,Aboukhamis M.Using data mining to estimate missing sensor data[A].2007 7th IEEE International Conference on Data Mining Workshops[C].Piscataway,NJ:IEEE,2007.207-212.
  • 10Suciu D,Olteanu D,Ré C,et al.Probabilistic databases[J].Synthesis Lectures on Data Management,2011,3(2):1-180.

共引文献24

同被引文献16

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部