期刊文献+

基于改进高斯核度量和KPCA的数据聚类新方法

Novel Data Clustering Method Based on A Modified Gaussian Kernel Metric and Kernel PCA
下载PDF
导出
摘要 大多数超椭球聚类(hyper-ellipsoidal clustering,HEC)算法都使用马氏距离作为距离度量,已经证明在该条件下划分聚类的代价函数是常量,导致HEC无法实现椭球聚类.本文说明了使用改进高斯核的HEC算法可以解释为寻找体积和密度都紧凑的椭球分簇,并提出了一种实用HEC算法-K-HEC,该算法能够有效地处理椭球形、不同大小和不同密度的分簇.为实现更复杂形状数据集的聚类,使用定义在核特征空间的椭球来改进K-HEC算法的能力,提出了EK-HEC算法.仿真实验证明所提出算法在聚类结果和性能上均优于K-means算法、模糊C-means算法、GMM-EM算法和基于最小体积椭球(minimum-volume ellipsoids,MVE)的马氏HEC算法,从而证明了本文算法的可行性和有效性. Most hyper-ellipsoidal clustering(HEC) algorithms use the Mahalanobis distance as a distance metric. It has been proven that HEC, under this condition, cannot be realized since the cost function of partitional clustering is a constant. We demonstrate that HEC with a modified Gaussian kernel metric can be interpreted as a problem of finding condensed ellipsoidal clusters(with respect to the volumes and densities of the clusters) and propose a practical HEC algorithm named K-HEC that is able to efficiently handle clusters that are ellipsoidal in shape and that are of different size and density. We then try to refine the K-HEC algorithm by utilizing ellipsoids defined on the kernel feature space to deal with more complex-shaped clusters. Simulation experiments demonstrate the proposed methods have a significant improvement in the clustering results and performance over K-means algorithm, fuzzy C-means algorithm, GMM-EM algorithm and HEC algorithm based on minimum-volume ellipsoids using Mahalanobis distance.
作者 余文利 余建军 方建文 YU Wen-Li YU Jian-Jun FANG Jian-Wen(College of Information Engineering, Quzhou College of Technology, Quzhou 324000, China College of Electrical and Information Engineering, Quzhou University, Quzhou 324000, China)
出处 《计算机系统应用》 2017年第10期150-155,共6页 Computer Systems & Applications
关键词 数据聚类 超椭球聚类 最小体积椭球 核主成分分析 高斯核 data clustering hyper-ellipsoidal clustering minimum-volume ellipsoids kernel PCA Gaussian kernel
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部