期刊文献+

数量表征和韦伯—费希纳定律:应用及发展 被引量:7

Studying Numerical Representation by Weber-Fechner Law
下载PDF
导出
摘要 数量表征是人类与动物最重要的认知能力之一。长期以来对于数量表征的模式存在争论,部分研究者认为人类表征数量的方式具有符号的、离散的性质;而另一些研究者则认为,数量表征同其他物理刺激的表征一样,具有类比的、连续的性质。该研究从心理物理学角度考察该问题,提出数量表征在行为表现上遵循韦伯—费希纳定律;不同发展阶段中个体的数量表征行为均遵循韦伯定律;在神经表达上表现为具有韦伯—费希纳定律特征的对数或线性模型。通过总结已有研究结果,该研究有力地支持数量表征具有连续的性质。这也为研究其它类似性质的高阶认知表征提供了一种新的研究思路。 Numerical representation is one of the most important cognitive abilities for human and animals.How the numerical representation is represented is unknown, with some researchers believe that numerical representation, mainly based on symbolic system, is discrete; In contrast, others argue that numerical representation, originated from continuous physical quantity, is continuous. This article summarizes earlier and recent findings that numerical representation follows Weber-Fechner Law from three aspects, namely in terms of behavioral, developmental and neural representation. These findings suggest that numerical representation obeys Weber-Fechner Law and is continuous, and broaden horizons of researching on other similar high-level cognitive representations.
出处 《心理研究》 2017年第5期35-39,共5页 Psychological Research
基金 清华大学海外学者邀请聘请支持计划
关键词 数量表征 韦伯—费希纳定律 感知觉表征 numerical representation Weber-Fechner Law sense-perceptive representation
  • 相关文献

参考文献2

二级参考文献79

  • 1Barth, H. C. (2008). Judgments of discrete and continuous quantity: An illusory Stroop effect. Cognition, 109, 251 - 266.
  • 2Brannon, E. M. (2006). The representation of numerical magnitude. Current Opinion in Neurobiology, 16, 222 -229.
  • 3Brannon, E. (2002). The development of ordinal numerical knowledge in infancy. Cognition, 83, 223 - 240.
  • 4Brannon, E. M., Abbott, S. , & Lutz, D. J. (2004). Number bias for the discrimination of large visual sets in infancy. Cognition, 93, B59 - B68.
  • 5Brysbaert, M. (2004). Number recognition in different formats. In: Campbell, J. I. D. ( Ed. ) , Handbook of Mathematical Cognition ( pp. 23 - 42). Psychology Press, New York.
  • 6Dehaene, S. (1992). Varieties of numerical abilities. Cognition, 44, 1 -42.
  • 7Dehaene, S. (1997). The number sense. New York: Oxford University Press.
  • 8Feigenson, L. , Carey, S. , & Hauser, M. D. (2002). The representations underlying infants ' choices of more : object-files versus analog magnitudes. Psychological Science, 13, 150 - 156.
  • 9Feigenson, L. , Dehaene, S. , & Spelke, E. (2004). Core systems of number. TRENDS in Cognitive Sciences 8 (7), 307 - 314.
  • 10Gallistel, C. R. , & Gelman, R. (1992). Preverbal and verbal counting and computation. Cognition, 44, 43 -74.

共引文献10

同被引文献88

引证文献7

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部