摘要
数量表征是人类与动物最重要的认知能力之一。长期以来对于数量表征的模式存在争论,部分研究者认为人类表征数量的方式具有符号的、离散的性质;而另一些研究者则认为,数量表征同其他物理刺激的表征一样,具有类比的、连续的性质。该研究从心理物理学角度考察该问题,提出数量表征在行为表现上遵循韦伯—费希纳定律;不同发展阶段中个体的数量表征行为均遵循韦伯定律;在神经表达上表现为具有韦伯—费希纳定律特征的对数或线性模型。通过总结已有研究结果,该研究有力地支持数量表征具有连续的性质。这也为研究其它类似性质的高阶认知表征提供了一种新的研究思路。
Numerical representation is one of the most important cognitive abilities for human and animals.How the numerical representation is represented is unknown, with some researchers believe that numerical representation, mainly based on symbolic system, is discrete; In contrast, others argue that numerical representation, originated from continuous physical quantity, is continuous. This article summarizes earlier and recent findings that numerical representation follows Weber-Fechner Law from three aspects, namely in terms of behavioral, developmental and neural representation. These findings suggest that numerical representation obeys Weber-Fechner Law and is continuous, and broaden horizons of researching on other similar high-level cognitive representations.
出处
《心理研究》
2017年第5期35-39,共5页
Psychological Research
基金
清华大学海外学者邀请聘请支持计划
关键词
数量表征
韦伯—费希纳定律
感知觉表征
numerical representation
Weber-Fechner Law
sense-perceptive representation