摘要
为克服MEMS红外热电堆原有自校准响应分析方法存在的考虑参数单一、故障覆盖率低、校准精度低等缺点,全面考虑多个相关参数影响,采用RHPNN神经网络提高其故障覆盖率,再用小波神经网络提高校准精度,最后用FPGA实现了该算法。与传感器结合实验结果表明,本方案故障覆盖率达到92%,自校准后的测温绝对误差降到0.03 K。
In order to overcome the shortcomings of the original self-calibration response analysis method of MEMS infrared thermopile,such as considering the single parameter,low fault coverage,and low calibration precision,in this paper,the RHPNN neural network is used to improve the fault coverage,and then the wavelet neural network is used to improve the calibration precision. Finally,the algorithm is implemented by FPGA. The experimental results show that the fault coverage of this scheme is 92%,and the temperature measurement error of the sensor is reduced to 0. 03 K after self-calibration.
出处
《微型机与应用》
2017年第20期48-50,70,共4页
Microcomputer & Its Applications
基金
国家自然科学基金面上项目(61370044)
国家863计划(2015AA042605)
中科院-北大率先合作团队资助经费(201510280052)
中国科学院科技服务网络计划(STS计划)项目"物联网核心芯片及应用技术"
关键词
红外热电堆
MEMS
自校准
响应分析
神经网络
infrared thermopile
MEMS
self-calibration
response analysis
neural network