摘要
为了求解Hilbert空间中算子方程或minimax问题,构造了一类无穷维空间中的不精确拟牛顿算法,并考虑了其线性收敛性和超线性收敛性,是对有限维空间中不精确拟牛顿法的推广.当迭代算子由Broyden修正给出时,在一定的假设条件下,得到了不精确Broyden方法的线性收敛性和超线性收敛性.这为使用不精确拟牛顿法结合投影法求解算子方程做好了准备.
In order to solve operator equations and minimax problems in Hilber space, a class of In-exact Quasi-Newton method are considered which does not need the computation of the second derivative. Under certain assumotions, linear and super linear convergence rate are obtained for Broyden In-exact Quasi-Newton method. It is a preparation for solving operator equations combined with the projection method.
作者
王娟
于波
WANG Juan YU Bo(School of Statistics and Mathematics, Inner Mongolia University of Finance and Economics, Huhehaote 010070, China School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China)
出处
《数学的实践与认识》
北大核心
2017年第19期237-244,共8页
Mathematics in Practice and Theory
基金
内蒙古自然科学基金项目(2016MS0716)
内蒙古自治区高等学校科学研究项目(NJSY16134)