期刊文献+

一类不精确拟牛顿型算法的局部收敛性分析

Research of Convergence Analysis on a Class of In-exact Quasi-Newton Methods
原文传递
导出
摘要 为了求解Hilbert空间中算子方程或minimax问题,构造了一类无穷维空间中的不精确拟牛顿算法,并考虑了其线性收敛性和超线性收敛性,是对有限维空间中不精确拟牛顿法的推广.当迭代算子由Broyden修正给出时,在一定的假设条件下,得到了不精确Broyden方法的线性收敛性和超线性收敛性.这为使用不精确拟牛顿法结合投影法求解算子方程做好了准备. In order to solve operator equations and minimax problems in Hilber space, a class of In-exact Quasi-Newton method are considered which does not need the computation of the second derivative. Under certain assumotions, linear and super linear convergence rate are obtained for Broyden In-exact Quasi-Newton method. It is a preparation for solving operator equations combined with the projection method.
作者 王娟 于波 WANG Juan YU Bo(School of Statistics and Mathematics, Inner Mongolia University of Finance and Economics, Huhehaote 010070, China School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China)
出处 《数学的实践与认识》 北大核心 2017年第19期237-244,共8页 Mathematics in Practice and Theory
基金 内蒙古自然科学基金项目(2016MS0716) 内蒙古自治区高等学校科学研究项目(NJSY16134)
关键词 HILBERT空间 不精确拟牛顿算法 Broyden修正 收敛性 Hilbert space in-exact quasi-newton method broyden updating convergence
  • 相关文献

参考文献4

二级参考文献34

  • 1Argyros I.K. Concerning the convergence of a modified Newton-like method[J]. Journal for Analysis and its Applications, 1999, 18(3): 785-792.
  • 2Argyros I.K. On the convergence of inexact Newton-like methods[J]. Publication Mathematics, Debrecen, 1993, 43: 79-85.
  • 3Wang X.H. Convergence of Newton's method and uniqueness of equations in Banach space[J]. IMA Journal of Numerical Analysis, 2000, 20: 123-134.
  • 4Ulbrich M, Nonsmooth Newton-like methods for variational inequalities and contrained optimization problems in function spaces[R]. Habilitation thesis, Fakul-tatfur Mathematik, Technische Universitat Munchen, Munchen, 2002.
  • 5Liu J. and Gao Y. Inexact-Newton method for solving operator equations in infinitedimensional space[J]. Journal of Applied Mathematics and Computing, 2006, 22(1-2): 351-360.
  • 6Argyros I.K. Weak sufficient convergence conditions and applications for Newton methods[J]. Journal of Applied Mathematics & Computing, 2004, 16: 1-17.
  • 7Huang Z.D. Newton method under Lipschitz continuous derivative in Banach space[J]. Applied Mathematics and Computation, 2003, 140: 115-126.
  • 8Ulbrich M. On a nonsmooth Newton method for nonlinear complementarity problems in function space with applications to optimal control[C], in Complementarity: Applications, algo- rithms and extensions (Madison, WI, 1999), Kluwer Academic Publication, Dordrecht, 2001, 341-360.
  • 9Ulbrich M. Constrained optimal control of Navier-stokes flow by semismooth Newton methods[R]. Jecnical Report, Zentrum Math., Thchnische Universitat Munchen, Miinchen, 2001.
  • 10Coleman T.F., Li Y. and Verma A. A Newton method for american option pricing[R]. Technical Report CTC9907, Cornell Theory Center, 1999.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部