摘要
This work is concerned with e1-error estimates on a Hamiltonian-preserving scheme for the Liouville equation with pieeewise constant potentials in one space dimension. We provide an analysis much simpler than these in literature and obtain the same half-order convergence rate. We formulate the Liouville equation with discretized velocities into a series of linear convection equations with piecewise constant coefficients, and rewrite the numerical scheme into some immersed interface upwind schemes. The e1-error estimates are then evaluated by comparing the derived equations and schemes.
This work is concerned with e1-error estimates on a Hamiltonian-preserving scheme for the Liouville equation with pieeewise constant potentials in one space dimension. We provide an analysis much simpler than these in literature and obtain the same half-order convergence rate. We formulate the Liouville equation with discretized velocities into a series of linear convection equations with piecewise constant coefficients, and rewrite the numerical scheme into some immersed interface upwind schemes. The e1-error estimates are then evaluated by comparing the derived equations and schemes.